DOI QR코드

DOI QR Code

Self-reliant wireless health monitoring based on tuned-mass-damper mechanism

  • Received : 2013.07.21
  • Accepted : 2014.02.15
  • Published : 2015.06.25

Abstract

We propose an electrically self-reliant structural health monitoring (SHM) system that is able to wirelessly transmit sensing data using electrical power generated by vibration without the need for additional external power sources. The provision of reliable electricity to wireless SHM systems is a highly important issue that has often been ignored, and to expand the applicability of various wireless SHM innovations, it will be necessary to develop comprehensive wireless SHM devices including stable electricity sources. In light of this need, we propose a new, highly efficient vibration-powered generator based on a tuned-mass-damper (TMD) mechanism that is quite suitable for vibration-based SHM. The charging time of the TMD generator is shorter than that of conventional generators based on the impedance matching method, and the proposed TMD generator can harvest 16 times the amount of energy that a conventional generator can. The charging time of an SHM wireless transmitter is quantitatively formulated. We conduct wireless monitoring experiments to validate a wireless SHM system composed of a self-reliant SHM and a vibration-powered TMD generator.

Keywords

References

  1. Badel, A., Guyomar, D., Lefeuvre, E. and Richard, C. (2006), "Piezoelectric energy harvesting using a synchronized switch technique", J. Intel. Mat. Syst. Str., 17(9), 831-839. https://doi.org/10.1177/1045389X06057533
  2. Beeby, S. and White, N. (2010), Energy-Harvesting for Autonomous Systems (Smart Materials, Structures, and Systems), ArtechHouse.
  3. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
  4. Cerni, R.H. and Foster, L.E. (1962), Instrumentation for Engineering Measurement, Wiley, New York.
  5. Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr. B.F. and Seo, J.W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
  6. Chong, S.Y., Lee, J.R. and Shin, H.J. (2010), "A review of health and operation monitoring technologies for trains", Smart Struct. Syst., 6(9), 1079-1105. https://doi.org/10.12989/sss.2010.6.9.1079
  7. Cornwell, P.J., Goethal, J., Kowko, J. and Daminakis, M. (2005), "Enhancing energy harvesting using a tuned auxiliary structure", J. Intel. Mat. Syst. Str., 16, 825-834. https://doi.org/10.1177/1045389X05055279
  8. Den Hartog, J.P. (1984), Mechanical Vibrations, Dover, New York.
  9. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  10. Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. (2005), "Toward energy harvesting using active materials and conversion improvement by nonlinear processing", IEEE T. Ultrason. Ferr., 52, 584-595. https://doi.org/10.1109/TUFFC.2005.1428041
  11. Hagood, N.W. and von Flotow, A. (1991), "Damping of structural vibrations with piezoelectric materials and passive electrical networks", J. Sound Vib., 146(2), 243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  12. Hollkamp, J.J. (1994), "Multimodal passive vibration suppression with piezoelectric materials and resonant shunts", J. Intel. Mat. Syst. Str., 5(1), 49-57. https://doi.org/10.1177/1045389X9400500106
  13. Hu, N., Cai, Y., Zhu, G., Tsuji, C., Liu, Y., Alamusi and Cao, Y. (2012), "Characterization of damage size in metallic plates using Lamb waves", Struct. Health Monit., 11(2), 125-137. https://doi.org/10.1177/1475921711414230
  14. Kazmierski, T.J. and Beeby, S. (2010), Energy Harvesting Systems: Principles, Modeling and Applications, Springer.
  15. Kim, S., Clark, W.W. and Wang, Q. (2005), "Piezoelectric energy harvesting with a clamped circular plate:analysis", J. Intel. Mat. Syst. Str., 16, 847-854. https://doi.org/10.1177/1045389X05054044
  16. Kong, N., Ha, S.D., Erturk, A. and Inman, D.J. (2010), "Resistive impedance matching circuit for piezoelectric energy harvesting", J. Intel. Mat. Syst. Str., 21, 1293-1305. https://doi.org/10.1177/1045389X09357971
  17. Kozlowski, M.V., Cole, D.G. and Clark, R.L. (2011), "A comprehensive study of the RL series resonant shunted piezoelectric: a feedback controls perspective", J. Vib. Acoust., 133, Article No. 011012-1.
  18. Lefeuvre, E., Audigier, D., Richard, C. and Guyomar, D. (2007), "Buck-boost converter for sensorless power optimization of piezoelectric energy harvester", IEEE T. Power Electr., 22, 2018-2025. https://doi.org/10.1109/TPEL.2007.904230
  19. Lesieutre, G.A., Ottman, G.K. and Hofmann, H.F. (2003), "Damping as a result of piezoelectric energy harvesting", J. Sound Vib., 269(3-5), 991-1002. https://doi.org/10.1016/S0022-460X(03)00210-4
  20. Li, P., Gu, H., Song, G., Zheng, R. and Mo, Y.L. (2010), "Concrete structural health monitoring using piezoceramic-based wireless sensor networks", Smart Struct. Syst., 6(5), 731-748. https://doi.org/10.12989/sss.2010.6.5_6.731
  21. Lynch, J.P. (2005), "Design of a wireless active sensing unit for localized structural health monitoring", J. Struct. Control Health Monit., 12(3-4), 405-423. https://doi.org/10.1002/stc.77
  22. Makihara, K., Onoda, J. and Miyakawa, T. (2006), "Low energy dissipation electric circuit for energy harvesting", Smart Mater. Struct., 15(5), 1493-1498. https://doi.org/10.1088/0964-1726/15/5/039
  23. Makihara, K., Onoda, J. and Minesugi, K. (2007), "Using tuned electrical resonance to enhance bang-bang vibration control", AIAA J., 45(2), 497-504. https://doi.org/10.2514/1.21736
  24. Makihara, K., Takeuchi, S., Shimose, S. and Onoda, J. (2012), "Innovative digital self-powered autonomous system for multimodal vibration suppression", AIAA J., 50(9), 2004-2011. https://doi.org/10.2514/1.J051560
  25. Morgan, R.A. and Wang, K.W. (2002), "Active-passive piezoelectric absorber for systems under multiple non-stationary harmonic excitation", J. Sound Vib., 255(4), 685-700. https://doi.org/10.1006/jsvi.2001.4184
  26. Ottman, G.K., Hofmann, H.K., Bhatt, A.C. and Lesieutre, G.A. (2003), "Optimized piezoelectric energy harvesting circuit using step down converter in discontinuous conduction mode", IEEE T. Power Electr., 18(2), 696-703. https://doi.org/10.1109/TPEL.2003.809379
  27. Qiu, J., Jiang, H., Hongli, J. and Kongjun, Z. (2009), "Comparison between four piezoelectric energy harvesting circuits", Front. Mech. Eng. China, 4, 153-159. https://doi.org/10.1007/s11465-009-0031-z
  28. Shen, H., Qiu, J., Ji, H., Zhu, K. and Balsi, M. (2010), "Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction", Smart Mater. Struct., 19, Article No. 115017.
  29. Wang, Y. and Inman, D.J. (2011), "Comparison of control laws for vibration suppression based on energy consumption", J. Intel. Mat. Syst. Str., 22(8), 795-809. https://doi.org/10.1177/1045389X11411213
  30. Wu, S. (1996), "Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control", Proc. SPIE Smart Mater. Struct. Conf., SPIE Vol. 2720, Soc. Photo-Optical Inst. Eng., Bellingham, WA.
  31. Wu, W.J., Wickenheiser, A.M., Reissman, T. and Garcia, E. (2009), "Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers", Smart Mater. Struct., 18(5), Article No. 055012.

Cited by

  1. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting vol.19, pp.6, 2017, https://doi.org/10.12989/sss.2017.19.6.665
  2. Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2015, https://doi.org/10.12989/csm.2017.6.3.229
  3. Design method for the 2DOF electromagnetic vibrational energy harvester vol.25, pp.4, 2015, https://doi.org/10.12989/sss.2020.25.4.393