DOI QR코드

DOI QR Code

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method

유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석

  • 권양수 (한국과학기술원 건설 및 환경공학과) ;
  • 김진국 (POSCO 철강솔루션센터) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2015.04.16
  • Accepted : 2015.05.06
  • Published : 2015.06.30

Abstract

The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

프리스트레스 콘크리트 정착부의 설계를 위해 AASHTO 및 PTI에서 관련 설계식을 제안하고 있다. 그러나 이러한 설계식은 구조물의 긴장력이 단순 지압판을 통해 구조 전반으로 전달된다는 가정으로 유도된 것으로 실제 구조물에 적용되는 상용 정착구의 형태와는 차이가 있다. 이 논문에서는 하중전달 시험에 의한 실험적 방법과 3차원 고체요소를 사용한 비선형 유한요소해석 프로그램을 이용한 해석적 방법을 통해 정착구의 형상 변수에 따른 정착부의 거동특성 변화에 대한 연구를 수행하였다. 하중전달시험 결과에서 얻어진 하중변위 곡선 및 극한하중 값을 해석을 통해 얻은 결과와 비교하여 유한요소모델의 적합성을 확인하였다. 또한 정착구의 리브의 설치위치, 리브의 개수, 리브의 설치길이를 주요 변수로 설정하여 형상변수에 따른 매개변수 연구를 수행하였다.

Keywords

References

  1. AASHTO (1996) American Association of State Highway and Transportation Officials, Standard Specifications for Highway Bridges, 16th Edition.
  2. ABAQUS (2013) ABAQUS Analysis User's Manual version 6.13, Dassault Systemes Simulia Corp.
  3. Baltay, P., Gjelsvik, A. (1990) Coefficient of Friction for Steel on Concrete at High Normal Stress. J. Mater. Civil Eng. ASCE, 2(1), pp.46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  4. Breen, J.E., Burdet, O., Roberts, C., Sanders, D., Wollamnn, G. (1994) Anchorage Zone Reinforcement for Post-Tensioned Concrete Girder. NCHRP Report 356, Transportation Research Board, Washington, D.C.
  5. CEB-FIP (1990) CEB-FIP Model Code 90, Cornite Euro International Du Beton, pp.82-87.
  6. EOTA (2002) Guideline for European Technical Approval of Post-Tensioning Kits for Prestressing of Structures (ETAG 013), EOTA.
  7. Guyon, Y. (1953) Prestressed Concrete, Jonh Willy and Sons, Inc., New York.
  8. Kang, T.H.-K., Rha C.-S. (2011) Modeling Technologies for Unbonded Post-Tension Systems, J. Comput. Struct. Eng. Inst. Korea, 24(1), pp.33-42.
  9. KCI (2012) Concrete Design Code and Commentary, p.600.
  10. Kwak, H.G., Filippou, F.C. (1990) Finite Element Analysis of Reinforcement Concrete Structures under Monotonic Loads, Report No. UCB/SEMM-90/14, Univ. of California at Berkeley, Berkeley, p.120.
  11. Lee, J., Fenves, G.L. (1998) Plastic-Damage Model for Cyclic Loading of Concrete Structures, J. Eng. Mech., ASCE, 124(8), pp.892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  12. Park, R., Kent, D.C., Sampton, R.A. (1972) Reinforced Concrete Members with Cyclic Loading, ASCE J. Struct. Div., 98(7), pp.1341-1360.
  13. Park, J.H., Cho, J.-R., Park J. (2014) Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head, J. Comput. Struct. Eng. Inst. Korea, 27(6), pp.581-588. https://doi.org/10.7734/COSEIK.2014.27.6.581
  14. PTI (2006) Post-Tensioning Manual, Post-Tensioning Institute, 6th Edition.
  15. Roberts-Wollmann, C.L., Breen, J.E (2000) Design and Test Specifications for Local Tendon Anchorage Zones, ACI Struct. J., 97(6) pp.867-875.
  16. Scott, B.D., Park, R., Priestley, M.J.N. (1982). Stress-Strain behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, J. American Concr. Inst., 79, pp.13-27.

Cited by

  1. Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams pp.2048-4011, 2018, https://doi.org/10.1177/1369433218787727
  2. Development and Analysis of Unbonded Post-tensioned Anchorage for Single Tendon vol.31, pp.1, 2018, https://doi.org/10.7734/COSEIK.2018.31.1.39