DOI QR코드

DOI QR Code

Epithelial-mesenchymal Transition is Associated with Acquired Resistance to 5-Fluorocuracil in HT-29 Colon Cancer Cells

  • Received : 2015.06.14
  • Accepted : 2015.06.24
  • Published : 2015.06.30

Abstract

5-Fluorouracil (5-FU) is commonly used for the therapy of colon cancer; however, acquired resistance to 5-FU is a critical barrier to successful treatment and the primary cause of chemotherapy failure. Epithelial-mesenchymal transition (EMT) is a process whereby cells undergo alterations in morphology and molecular characteristics promoting tumor progression and metastasis. Accumulating evidence shows that transition from epithelial to mesenchymal phenotype in cancer cells is associated with their resistance to chemotherapy. However, it is still poorly understood whether EMT is involved in acquired resistance to 5-FU. In this study, we developed an in vitro cell model, 5-FU-resistant HT-29 colon cancer cells, and characterized the differences in cellular morphology and molecular alterations between parental and resistant cells. In accord with mesenchymal-like morphology of 5-FU-resistant HT-29 cells, the expression of the mesenchymal marker fibronectin was significantly increased in these cells in comparision with that in the parental cells. Of interest, we also found a marked increase in the expression of EMT-inducing transcription factors Twist, Zeb1, and Zeb2. Finally, 5-FU-resistant cells showed enhanced migration in comparison with parental HT-29. Taken together, these results indicate that EMT could be associated with 5-FU resistance acquired by HT-29 cells. A specific role of each transcription factor found in this study will require further investigation.

Keywords

References

  1. Siegel, R., Desantis, C. and Jemal, A. (2014) Colorectal cancer statistics, 2014. Ca Cancer J. Clin., 64, 104-117. https://doi.org/10.3322/caac.21220
  2. Douillard, J.Y., Cunningham, D., Roth, A.D., Navarro, M., James, R.D., Karasek, P., Jandik, P., Iveson, T., Carmichael, J., Alakl, M., Gruia, G., Awad, L. and Rougier, P. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet, 355, 1041-1047. https://doi.org/10.1016/S0140-6736(00)02034-1
  3. Longley, D.B., Harkin, D.P. and Johnston, P.G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 3, 330-338. https://doi.org/10.1038/nrc1074
  4. Park, I.J., You, Y.N., Agarwal, A., Skibber, J.M., Rodriguez-Bigas, M.A., Eng, C., Feig, B.W., Das, P., Krishnan, S., Crane, C.H., Hu, C.Y. and Chang, G.J. (2012) Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J. Clin. Oncol., 30, 1770-1776. https://doi.org/10.1200/JCO.2011.39.7901
  5. Thiery, J.P. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2, 442-454. https://doi.org/10.1038/nrc822
  6. Peinado, H., Olmeda, D. and Cano, A. (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer, 7, 415-428. https://doi.org/10.1038/nrc2131
  7. Kang, Y. and Massague, J. (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 118, 277-279. https://doi.org/10.1016/j.cell.2004.07.011
  8. Vandewalle, C., Comijn, J., De Craene, B., Vermassen, P., Bruyneel, E., Andersen, H., Tulchinsky, E., Van Roy, F. and Berx, G. (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res., 33, 6566-6578. https://doi.org/10.1093/nar/gki965
  9. Lombaerts, M., van Wezel, T., Philippo, K., Dierssen, J.W., Zimmerman, R.M., Oosting, J., van Eijk, R., Eilers, P.H., van de Water, B., Cornelisse, C.J. and Cleton-Jansen, A.M. (2006) E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br. J. Cancer, 94, 661-671. https://doi.org/10.1038/sj.bjc.6602996
  10. Rosano, L., Cianfrocca, R., Spinella, F., Di Castro, V., Nicotra, M.R., Lucidi, A., Ferrandina, G., Natali, P.G. and Bagnato, A. (2011) Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin. Cancer Res., 17, 2350-2360. https://doi.org/10.1158/1078-0432.CCR-10-2325
  11. Rho, J.K., Choi, Y.J., Lee, J.K., Ryoo, B.Y., Na, I.I., Yang, S.H., Kim, C.H. and Lee, J.C. (2009) Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer, 63, 219-226. https://doi.org/10.1016/j.lungcan.2008.05.017
  12. Kajiyama, H., Shibata, K., Terauchi, M., Yamashita, M., Ino, K., Nawa, A. and Kikkawa, F. (2007) Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int. J. Oncol., 31, 277-283.
  13. Hiscox, S., Jiang, W.G., Obermeier, K., Taylor, K., Morgan, L., Burmi, R., Barrow, D. and Nicholson, R.I. (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int. J. Cancer, 118, 290-301. https://doi.org/10.1002/ijc.21355
  14. Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Wong, H., Rodriguez, A., Herschkowitz, J.I., Fan, C., Zhang, X., He, X., Pavlick, A., Gutierrez, M.C., Renshaw, L., Larionov, A.A., Faratian, D., Hilsenbeck, S.G., Perou, C.M., Lewis, M.T., Rosen, J.M. and Chang, J.C. (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Pro. Natl. Acad. Sci. U.S.A., 106, 13820-13825. https://doi.org/10.1073/pnas.0905718106
  15. Zhang, N., Yin, Y., Xu, S.J. and Chen, W.S. (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 13, 1551-1569. https://doi.org/10.3390/molecules13081551
  16. Herrmann, R. (1996) 5-Fluorouracil in colorectal cancer, a never ending story. Ann. Oncol., 7, 551-552. https://doi.org/10.1093/oxfordjournals.annonc.a010668
  17. Thomson, S., Buck, E., Petti, F., Griffin, G., Brown, E., Ramnarine, N., Iwata, K.K., Gibson, N. and Haley, J.D. (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res., 65, 9455-9462. https://doi.org/10.1158/0008-5472.CAN-05-1058
  18. Byers, L.A., Diao, L., Wang, J., Saintigny, P., Girard, L., Peyton, M., Shen, L., Fan, Y., Giri, U., Tumula, P.K., Nilsson, M.B., Gudikote, J., Tran, H., Cardnell, R.J., Bearss, D.J., Warner, S.L., Foulks, J.M., Kanner, S.B., Gandhi, V., Krett, N., Rosen, S.T., Kim, E.S., Herbst, R.S., Blumenschein, G.R., Lee, J.J., Lippman, S.M., Ang, K.K., Mills, G.B., Hong, W.K., Weinstein, J.N., Wistuba, I.I., Coombes, K.R., Minna, J.D. and Heymach, J.V. (2013) An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res., 19, 279-290. https://doi.org/10.1158/1078-0432.CCR-12-1558
  19. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., Campbell, L.L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R.A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
  20. Shipitsin, M., Campbell, L.L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., Halushka, M.K., Sukumar, S., Parker, L.M., Anderson, K.S., Harris, L.N., Garber, J.E., Richardson, A.L., Schnitt, S.J., Nikolsky, Y., Gelman, R.S. and Polyak, K. (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell, 11, 259-273. https://doi.org/10.1016/j.ccr.2007.01.013
  21. Morel, A.P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S. and Puisieux, A. (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3, e2888. https://doi.org/10.1371/journal.pone.0002888
  22. Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., Wong, H., Rosen, J. and Chang, J.C. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst., 100, 672-679. https://doi.org/10.1093/jnci/djn123
  23. Barr, S., Thomson, S., Buck, E., Russo, S., Petti, F., Sujka-Kwok, I., Eyzaguirre, A., Rosenfeld-Franklin, M., Gibson, N.W., Miglarese, M., Epstein, D., Iwata, K.K. and Haley, J.D. (2008) Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin. Exp. Metastasis, 25, 685-693. https://doi.org/10.1007/s10585-007-9121-7
  24. Singh, A. and Settleman, J. (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
  25. Elloul, S., Elstrand, M.B., Nesland, J.M., Trope, C.G., Kvalheim, G., Goldberg, I., Reich, R. and Davidson, B. (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer, 103, 1631-1643. https://doi.org/10.1002/cncr.20946
  26. Pena, C., Garcia, J.M., Silva, J., Garcia, V., Rodriguez, R., Alonso, I., Millan, I., Salas, C., de Herreros, A.G., Munoz, A. and Bonilla, F. (2005) E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum. Mol. Genet., 14, 3361-3370. https://doi.org/10.1093/hmg/ddi366
  27. Uchikado, Y., Okumura, H., Ishigami, S., Setoyama, T., Matsumoto, M., Owaki, T., Kita, Y. and Natsugoe, S. (2011) Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer, 14, 41-49. https://doi.org/10.1007/s10120-011-0004-x
  28. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A. and Weinberg, R.A. (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927-939. https://doi.org/10.1016/j.cell.2004.06.006

Cited by

  1. YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy vol.15, pp.6, 2016, https://doi.org/10.1039/C5PP00438A
  2. miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer vol.20, pp.5, 2016, https://doi.org/10.1111/jcmm.12770
  3. Targeting Cancer Metabolism - Revisiting the Warburg Effects vol.32, pp.3, 2016, https://doi.org/10.5487/TR.2016.32.3.177
  4. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis vol.8, pp.6, 2016, https://doi.org/10.3390/toxins8060162
  5. Mitochondrial transcription factor A (TFAM) is upregulated in glioma vol.15, pp.6, 2017, https://doi.org/10.3892/mmr.2017.6467
  6. Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.069
  7. Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor vol.33, pp.1, 2017, https://doi.org/10.5487/TR.2017.33.1.063
  8. Curcumin reverses irinotecan resistance in colon cancer cell by regulation of epithelial–mesenchymal transition vol.29, pp.4, 2018, https://doi.org/10.1097/CAD.0000000000000599
  9. Epithelial–mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? pp.1476-5594, 2018, https://doi.org/10.1038/s41388-018-0378-x
  10. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00055
  11. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance vol.472, pp.5, 2018, https://doi.org/10.1007/s00428-018-2298-0
  12. Study of New Therapeutic Strategies to Combat Breast Cancer Using Drug Combinations vol.8, pp.4, 2018, https://doi.org/10.3390/biom8040175
  13. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-36808-z