DOI QR코드

DOI QR Code

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors

매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구

  • Boonyong, Sorrawas (Department of Civil & Environmental Engineering, South Dakota School of Mines & Technology) ;
  • Park, Ki Chul (Division of Civil Engineering, Munchang Co., Ltd.) ;
  • Kim, In Chul (Division of Architecture & Civil Engineering, Dongseo University)
  • Received : 2015.05.22
  • Accepted : 2015.06.08
  • Published : 2015.06.30

Abstract

The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.

ESA는 석션파일에 의해 설치되는 영구적인 해양구조물기초의 한 형태이다. 인발에 대한 정착하중을 증가시키기 위해, 3개의 수직플랜지가 120도의 간격으로 앵커표면을 따라 부착되어있다. ESA 거동에 영향을 미치는 여러 매개변수의 영향을 찾기 위해 고안된 분석적 해법을 이용한 분석적 매개변수 연구가 이루어졌다. 분석의 결과는 앵커의 매입깊이와 흙의 강도가 증가할 때 ESA의 부담하중도 증가하는 것으로 나타났으며, 그리고 하중 경사각이 증가할 때는 감소하는 것으로 나타났다. 또한 사각형의 투영된 면적을 가진 ESA는 앵커길이의 중심에서 수평적으로 인발될 때 가장 큰 인발력을 갖는 것으로 나타났다.

Keywords

References

  1. Bang, S. (1996). Anchor mooring line computer program user manual. Contract Report CR-6020-OCN Naval Facilities Engineering Service Center.
  2. Bang, S., Cho, Y., Kim, Y.S., Kwag, D.J., and Lee, T.H. (2003). Embedded suction anchors for floating breakwaters. Coastal Engineering 2003, Cadiz, Spain, 469-477.
  3. Beard, R.M. (1979). Long-term holding capacity of statically loaded anchors in cohesive soils. Technical Report No. TN- 1545, Naval Construction Battalion Center, Port Hueneme, CA.
  4. Beard, R.M., and Lee, H.J. (1975). Holding capacity of direct embedment anchors. Proceedings of the Civil Engineering in the Oceans/III, Delaware: University of Delaware, 1, 470-485.
  5. Cho, Y. (2001). Calibration of installation, analytical performance study, and analytical solution of loading capacity of suction piles. Ph.D Thesis, South Dakota School of Mines and Technology, SD, USA.
  6. DAS, B.M. (1998). Principles of Foundation Engineering. CA. ITP.
  7. DAS, B.M., and Picornell, M. (1986). Ultimate resistance of vertical plate anchors in clay. Coastal Engineering, 1831-1842.
  8. Dickin, E.A. (1988). Uplift behavior of horizontal anchor plates in sand. Journal of Geotechnical Engineering, ASCE, 114(11), 1300-1317. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1300)
  9. Hueckel, S. (1957). Model tests on anchoring capacity of vertical and inclined plates. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, England, vol. 2, 203-206.
  10. Mariupol'skii, L.G. (1965). The bearing capacity of anchor foundations. Soil Mechanics and Foundation Engineering, 26-37.
  11. Meyerhof, G.G. (1973). Uplift resistance of inclined anchors and piles. Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, USSR, vol. 2.1, 167-172.