DOI QR코드

DOI QR Code

Effects of opening distance on liquid-gas spray of pintle injector under atmospheric condition

핀틀 인젝터의 개도가 액체-기체 상압 분무에 미치는 영향

  • Yu, Kijeong (Korea Aerospace University) ;
  • Son, Min (Korea Aerospace University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2014.08.27
  • Accepted : 2015.06.22
  • Published : 2015.07.01

Abstract

Effects of opening distance on liquid-gas spray of pintle injector were experimentally investigated under atmospheric condition by using water and air as simulants of propellants. Discharge coefficients($C_d$) and mass flow rates were calculated with various injection conditions; 0.1 bar - 1.0 bar for water pressures and 0.2 mm - 1.0 mm for the pintle opening distances. Spray angles were measured from the spray images that were obtained by a shadowgraphy method. When opening distance is 0.2 mm, liquid sheet is not formed properly and it show non-uniform spray. than it can result in combustion instability. it has a weak correlation between the momentum flux ratio and the spray angle, while it has a strong correlation between the momentum ratio and spray angle. Finally the spray angles reduced exponentially when the momentum ratio increased and the spray angles converged to about 40 degrees.

모사 추진제로 물과 공기를 사용하여 상압 상태에서 핀틀 인젝터의 개도가 액체-기체 분무에 미치는 영향을 실험적으로 연구하였다. 액체 공급 압력은 0.1 bar에서 1.0 bar 까지, 핀틀 개도는 0.2 mm에서 1.0 mm 까지의 다양한 분사 상태에서 유량 계수와 질량 유량을 계산하였다. 분사각은 역광 기법을 이용하여 얻어진 분사 이미지에서 측정하였다. 핀틀 개도가 0.2 mm인 경우 정상적인 액막이 형성되지 않았고, 비 균질한 분사를 보였다. 이는 연소실 내부에 연소 불안정을 가져올 수 있다. 핀틀 개도를 이용하여 계산된 운동량 플럭스 비는 분사각에 약한 상관관계를 갖고 있고, 운동량 비는 분사각과 강한 상관관계를 갖고 있다. 운동량이 증가할수록 분사각은 지수 함수적으로 감소하였고, 분사각은 약 40도로 수렴하였다.

Keywords

References

  1. Jeong, W. H., Kim, D., Im, J. H., Yoon, H., "A Study on Characteristics of Gas/Liquid Coaxial Sprays Under Varying Flow Conditions," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 33, No. 8, 2005, pp. 54-61.
  2. Kim, Hyunsung, Kim, Byungsun, Yoon, Youngbin, "Effect of Multi-Swirl injector on Acoustic Damping for Reduction of Combustion instability," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 9, 2008, pp. 62-71. https://doi.org/10.5139/JKSAS.2008.36.1.062
  3. Dressler, G. A. and Bauer, J. M., "TRW pintle Engine heritage and Performance Characteristics," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, A.L., U.S.A, AIAA 2000-3871, 2000.
  4. Gavitt, K. R. and Mueller, T. J., "Testing of the 650 klbf LOX/LH2 low cost pintle engine," 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, U.T., U.S.A, AIAA 2001-3987, 2001.
  5. Gilroy, R. and Sackheim, R., "The Lunar Module Descent engine-A Historical Summary," 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, C.A., U.S.A, AIAA 89-2385, 1989.
  6. Calvignac, J., Dang, L., Tramel, T. L., and Paseur, L., "Design and Testing of Non-Toxic RCS Thrusters For Second Generation Reusable Launch Vehicles," 39th AIAA/ASME/SAE /ASEE Joint Propulsion Conference and Exhibit, A.L., U.S.A, AIAA 2003-4922, 2003.
  7. Gromski, J. M., Majamaki, A. N., Chianese, S. G., Weinstock, V. D., and Kim, T. S., "Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, T.N., U.S.A, AIAA 2010-6725, 2010.
  8. Austin, B. L. and Heister, S. D., "Characterization of Pintle Engine Performance For non-Toxic Hypergolic Bipropellants," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, I.N., U.S.A, AIAA 2002-4029, 2002.
  9. Bedard, M. J., Feldman, T. W., Rettenmaier, A. and Anderson, W., "Student Design/Build/Test of a Throttleable LOX-LCH4 Thrust Chamber," 48th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, G.A., U.S.A, AIAA 2012-3883, 2012.
  10. Huzel, D. K. and Huang, D. H., "Modern engineering for design of liquid-propellant rocket engines," AIAA, 1992.
  11. Keffer, J. F. and Baines, W. D., "The round turbulent jet in a cross-wind," Journal of Fluid Mechanics, Vol. 15, No.04, 1963, pp. 481-496. https://doi.org/10.1017/S0022112063000409

Cited by

  1. Design Procedure of a Movable Pintle Injector for Liquid Rocket Engines vol.33, pp.4, 2017, https://doi.org/10.2514/1.B36301