DOI QR코드

DOI QR Code

Fuel-Rich Combustion Characteristic of a Combined Gas Generator

혼합식 가스발생기의 연료과농 연소특성

  • Lee, Dongeun (Department of Aerospace Engineering, Konkuk University) ;
  • Lee, Changjin (Department of Aerospace Engineering, Konkuk University)
  • Received : 2014.12.15
  • Accepted : 2015.06.11
  • Published : 2015.07.01

Abstract

In this study, a combined hybrid rocket system is newly introduced which has characteristics of both gas generators and afterburner type hybrid rockets. In particular, a combined gas generator utilizing solid fuel and liquid/gas oxidizer was designed as a primary combustor of the system. Combustion tests were carried out with various equivalence ratio affected by parameters such as fuel length, oxidizer flow rate, fuel port diameter and fuel type. In general, fuel-rich gas generator produces low combustion gas temperature to meet the temperature requirement and the target temperature was transiently set less than 1600 K. Since it was found that controlling parameters showed limited effects on the change of equivalence ratio, mixture of $O_2$ and $N_2$ as an oxidizer was additionally introduced. As a result, a combined gas generator successfully produced combustion gas temperature of less than 1600 K Future studies will carry out more combustion tests to attain fuel-rich combustion gas temperature less than 1200 K, which was a temperature requirement of a gas generator system in the previous studies.

본 논문은 하이브리드 로켓 성능향상을 위하여 가스발생기형과 후방 연소형 개념을 결합한 혼합형 하이브리드 로켓을 제안하고 있다. 특히 고체 추진제를 사용하는 기존의 가스발생기와 달리, 고체연료와 액체/기체 산화제를 적용한 혼합식 가스발생기를 제안하였으며 혼합식 가스발생기의 연료과농 연소특성을 확인하기 위하여 연료 길이, 산화제 유량, 연료 내경 그리고 연료 종류를 변화하며 연소가스 온도 변화를 측정하였다. 그러나 이들 인자 변화에 의한 온도변화가 매우 제한적이므로 또 다른 인자로 $O_2$$N_2$를 혼합한 혼합산화제를 사용하였다. 이때 가스발생기의 연소가스 온도의 요구조건은 1600 K이하로 설정하였으며 연소 시험에서 혼합식 가스발생기는 온도조건을 만족하는 연료과농 연소가스가 생성되었음을 확인하였다. 그러나 온도에 따른 검댕의 발생특성과 다른 이전 연구들에서 제시하는 가스발생기 연소가스 온도 요구조건이 1200 K이하임을 고려할 때, 최종적으로 이 조건을 만족하는 연료과농 연소가스를 생성할 계획이다.

Keywords

References

  1. Shackelford, B., "The Hybrid Propulsion Technology Program Phase 1," NAS8-37777, Vol. 3, 1989.
  2. Shackelford, B., "The Hybrid Propulsion Technology Program Phase 1," NAS8-37777, Vol. 4, 1989.
  3. Kuo, K. K., Lu, Y. C., Chiaverini, M. J., Johnson, D. K., Serin, N., Risha, G. A., Merkle, C. L., and Venkateswaran, S., "Fundamental Phenomena On Fuel Decomposition and Boundary-Layer Combustion Processes with Applications to Hybrid Rocket Motors," NAS8-39945, 1996.
  4. Rajesh, K. K., "Thrust Modulation in a Nitrous-Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor," 42nd AIAA Joint Propulsion Conference & Exhibit, AIAA 2006-4503, 2006.
  5. Pastrone, D., "Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines," Hindawi Publishing Corporation International Journal of Aerospace Engineering, Vol. 2012, Article ID 649753, 2012.
  6. Pilon, B., and Louwers, J., "Development of Staged Combustion Aft-Injected Hybrid (SCAIH) Propulsion at Cesaroni Technology Inc," 46th AIAA Joint Propulsion Conference, AIAA 2010-6786, 2010.
  7. Pilon, B., "Investigation of Injector System and Gas Generator Propellant For Aft-Injected Hybrid Propulsion," master's thesis, Carleton University, Canada, 2006.
  8. Humble, R. W., Henry, G. N., and Larson, W. J., "Space Propulsion Analysis and Design," McGraw-Hill, lnc., New York, 1995
  9. Korting, P. A. O. G., Schoyer, H. F. R., and van der Geld, C. W. M., "On the Use of an Ultrasonic Pulse-Echo Technique for Regression Rate Analysis," SFCC publication, No. 24, 1987.
  10. Sutton, G. P., and Biblarz, O., "Rocket Propulsion Elements," 7th Ed., John Wiley & Sons Inc., New York, 2001, pp.579-606.

Cited by

  1. Fuel Rich Gas O/F Ratio Characteristics of HDPE and Paraffin Fuel in Low Range of the Oxidizer Mass Flux vol.20, pp.6, 2016, https://doi.org/10.6108/KSPE.2016.20.6.054
  2. Fuel-rich Combustion with AP added Propellant in a Staged Hybrid Rocket Engine vol.44, pp.7, 2016, https://doi.org/10.5139/JKSAS.2016.44.7.576