DOI QR코드

DOI QR Code

Sensitivity Test of the Numerical Simulation with High Resolution Topography and Landuse over Seoul Metropolitan and Surrounding Areas

수도권 지역에서의 고해상도 지형과 지면피복자료에 따른 수치모의 민감도 실험

  • Park, Sung-Hwa (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Yi, Chaeyeon (Weather Information Service Engine, Hankuk University of Foreign Studies)
  • 박성화 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 이채연 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2015.03.04
  • Accepted : 2015.04.22
  • Published : 2015.06.30

Abstract

The objective of this study is to evaluate the impact of the high resolution topographies and landuses data on simulated meteorological variables (wind speed at 10 m, temperature at 2 m and relative humidity at 2 m) in WRF. We compare the results with WRF simulation using each resolution of the topographies and landuses, and with 37 AWS observation data on the Seoul metropolitan regions. According to results of using high-resolution topography, WRF model gives better topographical expression over domain. And we can separate more detail (Low intensity residential, high intensity residential, industrial or commercial) using high resolution landuses data. The result shows that simulated temperature and wind speed are generally higher than AWS observation data. However, simulation trend with temperature, wind speed, and relative humidity are similar to observation data. The reason for that is that the high precipitation event occurred in CASE 1 and 2. Temperature have correlation of 0.43~0.47 and standard deviation of $2.12{\sim}2.28^{\circ}C$ in CASE 1, while correlation of more than 0.8 and standard deviation of $3.05{\sim}3.18m\;s^{-1}$ in CASE 2. In case of wind speed, correlation have lower than 0.5 and Standard Deviation of $1.88{\sim}2.34m\;s^{-1}$ in CASE 1 and 2. In statistical analysis shows that using highest resolution (U01) results are more close to the AWS observation data. It can be concluded that the topographies and landuses are important factor that affect model simulation. However, the tendency to always use high resolution topographies and landuses data appears to be unjustified, and optimal solution depends on the combination of scale effect and mechanisms of dynamic models.

Keywords

References

  1. Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521-536. https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2
  2. Baik, J.-J., Y.-H. Kim, and H.-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteorol., 40, 1462-1475. https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
  3. CGIAR-CSI, 2012: SRTM 90m Digital Elevation Data. http://srtm.csi.cgiar.org/index.asp.
  4. Choi, Y. J., S. L. Kang, J. K. Hong, S. Grimmond, and K. J. Davis, 2013: A next-generation Weather Information Service Engine (WISE) customized for urban and surrounding rural areas. Bull. Amer. Meteor. Soc., 94, ES114-ES117.
  5. De Meij, A., and J. F. Vinuesa, 2014: Impact of SRTM and corine land cover data on meteorological parameters using WRF. Atmos. Res., 143, 351-370. https://doi.org/10.1016/j.atmosres.2014.03.004
  6. Dupont, E., L. Menut, B. Carissimo, J. Pelon, and P. Flamant, 1999: Comparison between atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ., 33, 979-994, 1999. https://doi.org/10.1016/S1352-2310(98)00216-7
  7. Draxler, R. R., 1986: Simulated and observed influence of the nocturnal urban heat island on the local wind field. J. Climate Appl. Meteor., 25, 1125-1133. https://doi.org/10.1175/1520-0450(1986)025<1125:SAOIOT>2.0.CO;2
  8. Garstang, M., P. D. Tyson, and G. D. Emmitt, 1975: The structure of heat islands. Rev. Geophys. Space Phys., 13, 139-165. https://doi.org/10.1029/RG013i001p00139
  9. Grossman-Clarke S., J. A. Zehnder, T. Loridan, and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 1649-1664. https://doi.org/10.1175/2010JAMC2362.1
  10. Ha, W. S., and J. G. Lee, 2011: WRF sensitivity experiments on the choice of land cover data an event of sea breeze over the Yeongdong region. Atmosphere, 214, 373-389 (in Korean with English abstract).
  11. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  12. Jee, J.-B., and Y.-J., Choi, 2014: Conjugation of landsat data for analysis of the land surface properties in capital area. J. Korean Earth Sci. Soc., 35, 54-68. https://doi.org/10.5467/JKESS.2014.35.1.54
  13. Kabat, P., and Coauthors, 2002: Vegetation, water, humans and the climate change: A new perspective on an interactive system. Springer, Heidelberg, Germany, 566 pp.
  14. Kang, J.-H., M.-S. Suh, and C.-H. Kwak, 2007: Comparison of the land cover data sets over Asian region: USGS, IGBP, and UMd. Atmosphere, 17, 159-169 (in Korean with English abstract).
  15. Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol., 44, 593-605.
  16. Kim, Y.-H., S.-B. Ryoo, J.-J. Baik, I.-S. Park, H.-J. Koo, and J.-C. Nam, 2008: Does the restoration of an inner-city stream in Seoul affect local thermal environment?. Theor. Appl. Climatol., 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  17. Landsberg, H. E., 1970: Man-made climate changes. Science, 170, 1265-1274. https://doi.org/10.1126/science.170.3964.1265
  18. Lee, S. H., S. W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127-2143. https://doi.org/10.5194/acp-11-2127-2011
  19. Lin, C. Y., F. Chen, J. Huang, W. C. Chen, Y. A. Liou, W. N. Chen, and S. C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmos. Environ., 42, 5635-5649. https://doi.org/10.1016/j.atmosenv.2008.03.015
  20. Lin, Y.-L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 40-49. https://doi.org/10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2
  21. Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover charcteristics data base and IGBP GISCover from 1 km AVHRR data. Int. J. Remote Sens., 18, 1251-1277.
  22. Mestayer, P. G., and Coauthors, 2005: The urban boundary layer field campaign in Marseille (UBL/CLUESCOMPTE): Set-up and first results. Bound.-Layer Meteor., 114, 315-365. https://doi.org/10.1007/s10546-004-9241-4
  23. Oke, 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1-24.
  24. Oke, 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.
  25. Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28, 1374-1388. https://doi.org/10.1175/1520-0469(1971)028<1374:LCOUHI>2.0.CO;2
  26. Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26, 965-981. https://doi.org/10.1016/0960-1686(92)90028-J
  27. Rotach, M. W., and Coauthors, 2005: BUBBLE-an urban boundary layer meteorology project. Theor. Appl. Climatol., 81, 231-261. https://doi.org/10.1007/s00704-004-0117-9
  28. Seo, B.-K., J. Y., Byon, and Y. J. Choi, 2010: Sensitivity evaluation of wind fields in surface layer by WRFPBL and LSM parameterizations. Atmosphere, 20, 319-332 (in Korean with English abstract).
  29. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, CO, 125 pp.
  30. Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol., 41, 689-701. https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
  31. Taylor, C. M., E. F. Lambin, N. Stephenne, R. J. Harding, and R. L. H. Essery, 2002: The influence of land use change on climate in the Sahel. J. Climate, 15, 3615-3629. https://doi.org/10.1175/1520-0442(2002)015<3615:TIOLUC>2.0.CO;2
  32. Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol., 40, 192-209. https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2
  33. Zhang, C., H. Lin, M. Chen, and L. Yang, 2014: Scale matching of multiscale Digital Elevation Model (DEM) data the Weather Research and Forecasting (WRF) model: a case study of meteorological simulation in Hong Kong. Arab. J. Geosci., 7, 2215-2223. https://doi.org/10.1007/s12517-014-1273-6

Cited by

  1. Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.111
  2. Analysis of Meteorological and Radiation Characteristics using WISE Observation Data vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.89