DOI QR코드

DOI QR Code

A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology

서울시 건물형태에 따른 거칠기길이 분포특성 연구

  • Yi, Chaeyeon (Weather Information Service Engine Project, Hankuk University of Foreign Studies) ;
  • Kwon, Tae Heon (Weather Information Service Engine Project, Hankuk University of Foreign Studies) ;
  • Park, Moon-Soo (Weather Information Service Engine Project, Hankuk University of Foreign Studies) ;
  • Choi, Young Jean (Weather Information Service Engine Project, Hankuk University of Foreign Studies) ;
  • An, Seung Man (Department of Landscape Architecture, Sungkyunkwan University)
  • 이채연 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 권태헌 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 박문수 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 최영진 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 안승만 (성균관대학교 조경학과)
  • Received : 2015.02.09
  • Accepted : 2015.02.23
  • Published : 2015.06.30

Abstract

The purpose of this study is for the fundamental understandings about building morphological parameters and aerodynamic roughness parameters of Seoul, Korea using the detailed urban geographic information datasets. Applied roughness parameter calculations are based on a digital map of buildings with lot area polygons. The quality of the developed roughness length ($z_0$) of Seoul was evaluated with densely installed 107 automatic weather stations. The correlation coefficient results between averaged wind speeds of AWS data and averaged $z_0$ is -0.303 in night and -0.398 in day (200 m radii circles case). Further $z_0$ enhancement should follow by considering other surface features such as high tree and orography of Seoul. However, this study would meet the needs to for local- or meso-scale meteorological modeling applications of Seoul. However, further studies would require for enhancing the $z_0$ applications of Seoul.

Keywords

References

  1. Barlag, A. B., and W. Kuttler, 1991: The significance of country breezes for urban planning. Energ. Buildings, 15, 291-297.
  2. Bottema, M., 1996: Roughness parameters over regular rough surfaces: Experimental requirements and model validation. J. Wind Eng. Ind. Aerod., 64, 249-265. https://doi.org/10.1016/S0167-6105(96)00062-1
  3. Bottema, M., and P. G. Mestayer, 1998: Urban roughness mapping-validation techniques and some first results. J. Wind Eng. Ind. Aerod., 74, 163-173.
  4. Burian, S. J., W. S. Han, and M. J. Brown, 2003: Morphological analyses using 3D building databases: Oklahoma City, Oklahoma. LA-UR, Los Alamos National Laboratory, Los Alamos.
  5. Burian, S. J., S. W. Stetson, W. Han, J. Ching, and D. W. Byun, 2004: High-resolution dataset of urban canopy parameters for Houston, Texas. In Preprint proceedings. Fifth Symposium on the Urban Environment, AMS, 23-26 pp.
  6. Chappell, A., and G. L. Heritage, 2007: Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study. Atmos. Environ., 41, 5817-5830. https://doi.org/10.1016/j.atmosenv.2007.03.037
  7. Chappell, A., S. Van Pelt, T. Zobeck, and Z. Dong, 2010: Estimating aerodynamic resistance of rough surfaces using angular reflectance. Remote Sens. Environ., 114, 1462-1470. https://doi.org/10.1016/j.rse.2010.01.025
  8. Choi, Y., S. L. Kang, J. Hong, S. Grimmond, and K. J. Davis, 2013: A next-generation Weather Information Service Engine (WISE) customized for urban and surrounding rural areas. Bull. Amer. Meteor. Soc., 94, ES114-ES117.
  9. Cionco, R. M., and R. Ellefsen, 1998: High resolution urban morphology data for urban wind flow modeling. Atmos. Environ., 32, 7-17. https://doi.org/10.1016/S1352-2310(97)00274-4
  10. Colin, J., and R. Faivre, 2010: Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China. Hydrol. Earth Syst. Sc., 14, 2661-2669. https://doi.org/10.5194/hess-14-2661-2010
  11. Dong, Z., X. Liu, H. Wang, and X. Wang, 2003: Aeolian sand transport: a wind tunnel model. Sediment. Geol., 161, 71-83. https://doi.org/10.1016/S0037-0738(02)00396-2
  12. Gal, T., and Z. Sumeghy, 2007: Mapping the roughness parameters in a large urban area for urban climate applications, Acta Climatologica et chorological, Universitatis Szegediensis, Tomus, 40-41, 27-36.
  13. Gal, T., and J. Unger, 2009: Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build. Environ., 44, 198-206 https://doi.org/10.1016/j.buildenv.2008.02.008
  14. Grimmond, C. S. B., and C. Souch, 1994: Surface description for urban climate studies: a GIS based methodology. Geocarto International, 9, 47-59. https://doi.org/10.1080/10106049409354439
  15. Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol., 38, 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  16. Haala, N., and C. Brenner, 1999: Extraction of buildings and trees in urban environments. ISPRS J. Photogram. Remote Sens., 54, 130-137. https://doi.org/10.1016/S0924-2716(99)00010-6
  17. Ha, K.-J., A.-S. Suh, and H.-S. Chung, 1998: The application of satellite data to land surface process parameterization in ARPS model. Journal of the Korean Association of Geographic Information Studies, 1, 99-108.
  18. Hong J., H. C. Lee, J. Kim, B. Kim, C. Cho, and S. Lee, 2003: Inferring regional scale surface heat flux around FK. KoFlux site: From one point tower measurement to MM5 mesoscale model. Korean J. Agric. Forest Meteor., 5, 138-149.
  19. Kanda, M., A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, 2013: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteor., 148, 357-377. https://doi.org/10.1007/s10546-013-9818-x
  20. Kwon, T. H., M. S. Park, C. Yi, and Y. J. Choi, 2014: Effects of different averaging operators on the urban turbulent fluxes. J. Korean Meteor. Soc., 24, 197-206.
  21. Kim, K. R., C. Yi, J.-S. Lee, F. Meier, B. Jaenicke, U. Fehrenbach, and D. Scherer, 2014: BioCAS: Biometeorological climate impact assessment system for buildingscale impact assessment of heat-stress related mortality. Die Erde., 145, 62-79.
  22. Landsberg, H. E., 1981: The Urban Climate. Academic Press, Inc. (London) Ltd., London.
  23. Lee, Y.-H., and S.-U. Park, 1997: Modification of boundary layer by a change of surface roughness. J. Korean Meteor. Soc., 33, 445-456.
  24. Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
  25. Moore, K., and B. Bailey, 2004: Roughness lengths in complex terrain derived from sodar wind profiles. In 16th Symposium on Boundary Layers and Turbulence.
  26. Ng, E., C. Yuan, L. Chen, C. Ren, and J. C. Fung, 2011: Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape Urban Plan., 101, 59-74. https://doi.org/10.1016/j.landurbplan.2011.01.004
  27. Oke, T. R., 1987: Boundary Layer Climates. Methuen, Inc., USA.
  28. Priestnall, G., J. Jaafar, and A. Duncan, 2000: Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems, 24, 65-78. https://doi.org/10.1016/S0198-9715(99)00047-2
  29. Ratti, C., and P. Richens, 1999: Urban texture analysis with image processing techniques. Computers in Building, Springer US, 49-64 pp.
  30. Ratti, C., S. Di Sabatino, and R. Bitter, 2006: Urban texture analysis with image processing techniques: wind and dispersion. Theor. And Appl. Climatol., 84, 77-99. https://doi.org/10.1007/s00704-005-0146-z
  31. Raupach, M., 1992: Drag and drag partition on rough surfaces. Bound.-Layer Meteor., 60, 375-395. https://doi.org/10.1007/BF00155203
  32. Saatchi, S., E. Rodriguez, S. Denning, and R. Dubayah, 2001: Estimation of aerodynamic roughness from synergistic use of satellite imagery. Proceeding of IGARSS, Sydney, Australia.
  33. Steiniger, S., T. Lange, D. Burghardt, and R. Weibel, 2008: An approach for the classification of urban building structures based on discriminant analysis techniques. Transactions in GIS, 12, 31-59.
  34. Tian, X., Z. Y. Li, C. Van der Tol, Z. Su, X. Li, Q. S. He, Y. F. Bao, E. X. Chen, and L. H. Li, 2011: Estimating zero-plane displacement height and aerodynamic roughness length using synthesis of LiDAR and SPOT-5 data. Remote Sens. Environ., 115, 2330-2341. https://doi.org/10.1016/j.rse.2011.04.033
  35. Voogt, J. A., and T. R. Oke, 1997: Complete urban surface temperatures. J. Appl. Meteorol., 36, 1117-1132. https://doi.org/10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2
  36. Vukovich, F. M., 1971: Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon. Wea. Rev., 99, 919-926. https://doi.org/10.1175/1520-0493(1971)099<0919:TAOTEO>2.3.CO;2
  37. Yi, C., S. M. An, K. R. Kim, Y.-J. Choi, and D. Scherer, 2012: Improvement of air temperature analysis by precise spatial data on a local-scale-A Case Study of Eunpyeong New-town in Seoul. Journal of the Korean association of geographic information studies. 15, 144-158. https://doi.org/10.11108/kagis.2012.15.1.144
  38. Yi, C., J.-H. Eum, Y.-J. Choi, K. R. Kim, D. Scherer, U. Fehrenbach, and G.-H. Kim, 2011: Development of Climate Analysis Seoul (CAS) maps based on landuse and meteorological model. Journal of the Korean association of geographic information studies., 14, 12-25. https://doi.org/10.11108/kagis.2011.14.1.012
  39. Yi, C., K. R. Kim, S. M. An, Y. J. Choi, A. Holtmann, B. Janicke, U. Fehrenbach, and D. Scherer, 2015: Estimating spatial patterns of air temperature at buildingresolving spatial resolution in Seoul, Korea. Int. J. Climatol., doi:10.1002/joc.4363.
  40. Yoo, J., J. K. Hong, H. Kwon, J.-H. Lim, and J. Kim, 2010: On Estimation of Zero Plane Displacement from Single-level Wind Measurement above a Coniferous Forest. Korean J. Agric. Forest Meteor., 12, 45-62. https://doi.org/10.5532/KJAFM.2010.12.1.045
  41. Zhou, Y., X. Sun, W. Ju, X. Wen, and D. Guan, 2012: Seasonal, diurnal and wind-direction dependent variations of the aerodynamic roughness length in two typical forest ecosystems of China. Terr. Atmos. Oceanic Sci., 23,181-191. https://doi.org/10.3319/TAO.2011.10.06.01(A)

Cited by

  1. Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.111
  2. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea vol.10, pp.4, 2017, https://doi.org/10.5194/amt-10-1575-2017