DOI QR코드

DOI QR Code

A Study on Deterioration of Stone Monuments by Acid Fog

산성안개에 의한 석조문화재 구성암석의 손상 연구

  • Do, Jin Young (Dept. Conservation science of cultural properties, Gyeongju University) ;
  • Kim, Sang Woo (Korea Institute of construction safety technology) ;
  • Cho, Hyen Goo (Department of Geology and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 도진영 (경주대학교 문화재보존학과) ;
  • 김상우 (한국건설안전기술원) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2015.06.11
  • Accepted : 2015.06.26
  • Published : 2015.06.30

Abstract

In order to predict the deterioration of stone monument due to acid fog, an artificial fog test using pH4.0 and pH5.6 was applied to the Gyeongju Namsan granite, decite and marble. After the test had weathered Gyeongju Namsan granite a larger weight reduction due to acid fog than fresh one. Decite has shown the most significant changes among the tested rocks with about 0.005 % of weight reduction. Decite and weathered granite will have considerable weight reduction due to acid rain than the acid fog, whereas the marble was expected to show a weight reduction regardless of the phase of water. The porosity and water absorption rate of weathered granite had significantly increased. This result means that the weathered rock is predicted to be more susceptible to acid fog than the fresh rock. The absorption rate of the marble after the test had shown approximately 50 % increase. The color of the samples had slightly changed towards yellow, such tendency was greater shown in weathered rocks. The marble reacted with acid fog had an increased whiteness. A large amount of cation in the samples is caused mainly by the dissociation of minerals through the reaction with acid fog.

석조문화재의 산성안개에 의한 손상을 예측하기 위하여 경주남산화강암, 응회암과 대리암에 pH4.0과 pH5.6의 인공안개를 적용하였다. 풍화된 경주남산화강암은 신선한 암에 비해 산성안개에 의한 무게감소가 더 크다. 응회암은 산성안개시험 매 회당 약 0.005 %의 무게감소율로 시험 대상 암석 중 가장 크게 변하였다. 응회암과 풍화된 화강암은 산성안개 보다는 산성비에 의한 무게감소가 더 크게 발생할 것이며, 대리암은 산성강우의 상태와 상관없이 무게감소가 나타날 것으로 예측되었다. 산성안개와 반응한 후 풍화암의 공극률과 흡수율이 월등히 증가한 결과를 보여, 풍화암이 신선한 암보다 산성안개에 취약할 것으로 예상된다. 대리암의 흡수율은 시험 후 약 50% 증가하였다. 암석의 색상이 시험 후 황색쪽으로 약간 변화되었으며, 신선한 암보다는 풍화된 화강암에서 그 경향이 더 크다. 대리암은 산성안개와 반응 후 백색도가 증가하였다. 산성안개가 적용된 암석에서 검출되는 다량의 양이온은 반응에 의해 분해된 구성광물에서 기인한다.

Keywords

References

  1. Bonazza, A., Sabbioni, C., and Ghedini, N. (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmospheric Environment, 39(14), 2607-2618. https://doi.org/10.1016/j.atmosenv.2005.01.040
  2. Do, J.Y., Choi, G.J., and Cho, H.G. (2009) Modeling study on deterioration of stone monuments in the Gyeongju Namsan mountain by acid rain. Journal of the Mineralogical Society of Korea, 23, 63-71 (in Korean with English abstract).
  3. Do, J.Y., Kim, J.J., and Cho, H.G. (2006) Characteristics of the black surface layer on carbonate stone pagoda in urban area and its origin. Journal of the Mineralogical Society of Korea, 19(4), 383-392 (in Korean with English abstract).
  4. Frasca, M. and Yamamoto, J. (2004) Accelerated weathering of granite building stone by sulfur dioxide exposure. 10th International Congress on Deterioration and Conservation of Stone, 67-74.
  5. German Industry Norm (1988) DIN 52103 (Determination of water absorption and saturation coefficient of natural stone and mineral aggregates).
  6. Houghton, H.G. (1955) On the chemical composition of fog and cloud water. Journal of Meteorology, 12, 355-357. https://doi.org/10.1175/1520-0469(1955)012<0355:OTCCOF>2.0.CO;2
  7. Jung, Y.S. (1997) Measurements and analyses of acid fog. KOSEF 951-0401-022-2 (in Korean with English abstract).
  8. Kim, M., Lim, Y., Park, K., and Hwang, H. (1998) A study on the behavior and deposition of acid precipitation- chemical composition of fog water at Chunchon (1996-1997). Journal of Korean Society for Atmospheric Environment, 14(5), 491-498 (in Korean with English abstract).
  9. Kim, K.Y. and Do, J.Y. (2008) Measurement of submicron aerosols in the urban area of Seoul and in the national park area of Gyeongju using PIXE analysis. Journal of the Korean Physical Society, 52(3), 896-903. https://doi.org/10.3938/jkps.52.896
  10. Korean Standards Service Network (2011) KS A 0067, Colour specification-CIE LAB and CIE LUV colour spaces.
  11. Lee, S. and Kim, S. (1994) Mineralogical study of the granite weathering in the seoul area, water-rock interaction in the Namsan granite. Journal of the Mineralogical Society of Korea, 7, 40-48 (in Korean with English abstract).
  12. Moroni, B. and Poli, G. (2000) Corrosion of limestone in humid air containing sulphur and nitrogen dioxides: a model study. 9th International Congress on Deterioration and Conservation of Stone, 167-374.
  13. Roekens, E. and Van Grieken, R. (1989) Rates of air pollution induced surface recession and material loss for a cathedral in Belgium. Atmospheric Environment, 23(1), 271-277. https://doi.org/10.1016/0004-6981(89)90119-4
  14. Topol, L.E. (1983) UAPSP precipitation data display for January 1, 1979-June 30, 1982, 1, Electric power plant research institute, Palo Alto, CA.

Cited by

  1. 안개 발생에 따른 문화재 표면의 색 변화 예측 연구 vol.32, pp.4, 2016, https://doi.org/10.12654/jcs.2016.32.4.04
  2. 강화제 0.8T0.2E1G_3wt0.08%와 1T1G_7wt0.08%의 대리암에 대한 적용성 평가 vol.30, pp.4, 2017, https://doi.org/10.9727/jmsk.2017.30.4.187