DOI QR코드

DOI QR Code

Properties of Quercus variabilis bio-oil prepared by sample preparation

시료 조건에 따른 굴참나무 바이오오일의 특성

  • Chea, Kwang-Seok (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Jo, Tae-Su (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Choi, Seok-Hwan (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Lee, Soo-Min (Department of wood chemistry & microbiology, Korea Forest Research Institute) ;
  • Hwang, Hye-Won (Department of forest science, Seoul National University) ;
  • Choi, Joon-Weon (Department of forest science, Seoul National University)
  • 채광석 (국립산림과학원 바이오에너지센타) ;
  • 조태수 (국립산림과학원 바이오에너지센타) ;
  • 최석환 (국립산림과학원 바이오에너지센타) ;
  • 이수민 (국립산림과학원 바이오에너지센타) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2015.02.06
  • Accepted : 2015.03.05
  • Published : 2015.03.30

Abstract

In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

시료의 입경 및 투입량 차이에 따른 바이오오일의 특성변화를 알아보기 위하여 0.5~2.0 mm 크기의 굴참나무(Quercus variabilis) 시료 300~900 g을 $465^{\circ}C$에서 1.6초 동안 급속열 분해하여 바이오오일을 제조하였다. 입경 및 투입량 차이에 따른 열분해 생성물의 수율변화에는 눈에 띠는 경향은 없었지만, 바이오오일 수율이 가장 많아 약 60.3~62.1%를 차지하였고, 미응축가스, 바이오차 순이었다. 바이오오일을 냉각관으로 응축하여 얻은 1차 바이오오일과 전기집진장치로 얻은 2차 바이오오일로 구분하여 수율을 측정한 결과, 1차 바이오오일의 수율이 2차 바이오오일 수율의 약 2배 이상을 나타내었다. 그러나 발열량은 2차 바이오오일이 1차 바이오오일 보다 약 2배 이상 높았으며, 최대 5,602 kcal/kg을 나타내었다. 1차 바이오오일의 수분함량이 20%이상으로 2차 바이오오일의 수분함량 10% 이하였다. 또한 2차 바이오오일의 원소분석 결과, 1차 바이오오일보다 탄소함량이 높고, 산소함량이 낮았기 때문에 수분함량과 원소조성 특성도 발열량에 영향을 미치는 것으로 판단된다. 바이오오일의 저장온도가 높을수록 또는 저장기간이 길수록 점도가 증가하며, 2차 바이오오일의 점도 증가 정도가 1차 바이오오일보다 컸는데, 저장기간 중에 바이오오일 성분 간의 화학적 결합에 의한 바이오오일의 고분자화가 진행되는 것으로 판단된다.

Keywords

References

  1. S. Xiu, A. Shahbazi, Bio-oil production and upgrading research: a review, Sustainable Energy Reviews 16 4406-4414 (2012). https://doi.org/10.1016/j.rser.2012.04.028
  2. M. Al-Sabawi, J. Chen, Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks: a review, Energy & Fuels 26 5373-5399 (2012). https://doi.org/10.1021/ef3006405
  3. P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Applied Catalysis A 407 1-19 (2011). https://doi.org/10.1016/j.apcata.2011.08.046
  4. W.N.R.W. Isahak, M.W.M. Hisham, M.A. Yarmo, T. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renewable and Sustainable Energy Reviews 16 5910-5923 (2012). https://doi.org/10.1016/j.rser.2012.05.039
  5. L. Ma, T. Wang, Q. Liu, X. Zhang, W. Ma, Q. Zhang, A review of thermal-chemical conversion of lignocellulosic biomass in China, Biotechnology Advances 30 859-873 (2012). https://doi.org/10.1016/j.biotechadv.2012.01.016
  6. M. Ikura, M. Stanciulescu and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass Bioenergy, 24, 221 (2003). https://doi.org/10.1016/S0961-9534(02)00131-9
  7. D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi and K. Gartner, Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part1: Emulsion production, Biomass Bioenergy, 25, 85 (2003). https://doi.org/10.1016/S0961-9534(02)00183-6
  8. J. F. Hernandez, S. N. Guash and J. C. Morla, Effect of pyrolysis production on diesel-fuel oil blends, Technological Quimica, 3, 18 (2006).
  9. U.S Department of Energy, Biomass Program Overview (2011).
  10. Bridgewater, A. V., Thermal Science, 8(2), 21-50 (2004). https://doi.org/10.2298/TSCI0402021B
  11. K. H. Kim, T. S. Kim, S. M. Lee, D. H. Choi, H. Y. Yeo, I. G. Choi, J. W. Choi, Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis, Renewable Energy 50 188-195 (2013). https://doi.org/10.1016/j.renene.2012.06.030
  12. W. N. R. W. Isanhak, M. W. M. Hisham, M. A. Yarmo and T. Y. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renewable and Sutainable Energy Review, 16, 5910 (2012). https://doi.org/10.1016/j.rser.2012.05.039
  13. A. V. Bridgwater and G. V. C. Peacocke, Fast pyrolysis processes for biomass, Renewable & Sustainable Energy Reviews, 4, 1 (2000). https://doi.org/10.1016/S1364-0321(99)00007-6
  14. J. Lehot, A. Oasmaa, Y. Solantausta, M. Kyto and D. Chiaramonti, Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils, VTT Technology 87, Espoo (2013).
  15. M. Ringer, V. Putsche and J. Scahill, Large-scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis, NREL Technical Report NREL/TP-510-37779 (2006).
  16. Demirbas. A, Calculation of higher heating values of biomass fuels. Fuel 76(5): 431-434 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  17. Czernik, S. and A. Bridgwater, Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18(2): 590-598 (2004). https://doi.org/10.1021/ef034067u
  18. Mohan, D., C. U. Pittman., Jr., and P. H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20(3): 848-889 (2006). https://doi.org/10.1021/ef0502397
  19. Fahmi, R., A.V. Bridgwater, I. Donnison, N. Yates, J. M. Jones, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87 : 1230-1240 (2008). https://doi.org/10.1016/j.fuel.2007.07.026
  20. Bayerbach, R., D.Meier, Characteriztion of water-insoluble fraction from fast pyrolysis liquids(pyrolytic lignin). Part IV:Structure elucidation of oligomeric molecules. J.Anal.Appl.Pyrol. 85: 98-107 (2009). https://doi.org/10.1016/j.jaap.2008.10.021

Cited by

  1. 기포 유동층 반응기에서 굴참나무의 열분해반응 특성 연구 vol.54, pp.5, 2015, https://doi.org/10.9713/kcer.2016.54.5.687