DOI QR코드

DOI QR Code

Study on the Effects of Corrosion Inhibitor According to the Functional Groups for Cu Chemical Mechanical Polishing in Neutral Environment

중성 영역 구리 화학적 기계적 평탄화 공정에서의 작용기에 따른 부식방지제의 영향성 연구

  • Lee, Sang Won (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University) ;
  • Kim, Jae Jeong (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University)
  • 이상원 (서울대학교 화학생물공학부) ;
  • 김재정 (서울대학교 화학생물공학부)
  • Received : 2014.10.16
  • Accepted : 2014.11.24
  • Published : 2015.08.01

Abstract

As the aluminum (Al) metallization process was replaced with copper (Cu), the damascene process was introduced, which required the planarization step to eliminate over-deposited Cu with Chemical Mechanical Polishing (CMP) process. In this study, the verification of the corrosion inhibitors, one of the Cu CMP slurry components, was conducted to find out the tendency regarding the carboxyl and amino functional group in neutral environment. Through the results of etch rate, removal rate, and chemical ability of corrosion inhibitors based on 1H-1,2,4-triazole as the base-corrosion inhibitor, while the amine functional group presents high Cu etching ability, carboxyl functional group shows lower Cu etching ability than base-corrosion inhibitor which means that it increases passivation effect by making strong passivation layer. It implies that the corrosion inhibitor with amine functional group was proper to apply for 1st Cu CMP slurry owing to the high etch rate and with carboxyl functional group was favorable for the 2nd Cu CMP slurry due to the high Cu removal rate/dissolution rate ratio.

금속 배선형성 재료가 구리로 대체됨에 따라 다마신(damascene) 공정이 도입되었고, 과증착된 구리를 화학적 기계적 평탄화(Chemical Mechanical Polishing, CMP) 방식을 통해 제거하는 구리 화학적 기계적 평탄화 공정이 필요하게 되었다. 본 연구에서는 중성영역 구리 화학적 기계적 평탄화 공정용 슬러리의 구성 요소 중 하나인 부식 방지제에 아미노기($-NH_2$)와 카르복실기(-COOH)를 부착시켜 그에 따른 영향성을 확인하고자 하였다. 1H-1,2,4-트리아졸(1H-1,2,4-triazole)을 기준 부식방지제로 선정하여 식각속도, 제거속도 및 화학적 식각력을 측정한 결과 아미노기는 높은 구리 식각 능력을 보여주는 반면, 카르복실기는 부식방지제 효과가 증대되어 기본 부식방지제보다 낮은 식각 능력을 보여주었다. 이는 높은 제거속도가 필요한 1차 구리 화학적 기계적 평탄화 공정에는 아미노기가, 높은 구리 제거속도/식각속도 비를 필요로 하는 2차 구리 화학적 기계적 평탄화 공정에는 카르복실기가 적합하다는 결론을 보여준다.

Keywords

References

  1. Allan, A., Edenfeld, D., Joyner, W. H., Kahng, A. B., Rogers, M. and Zorian, Y., "The International Technology Roadmap for Semiconductors 2001 Edition Interconnect," Computer, 35, 42-53(2002). https://doi.org/10.1109/MC.2002.993770
  2. Kim, M. J. and Kim, J. J., "Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices," Korean Chem. Eng. Res., 52, 26-39(2014). https://doi.org/10.9713/kcer.2014.52.1.26
  3. Steigerwald, J. M., Muraka, S. P. and Gutmann, R. J., Chemical Mechanical Planariation of Microelectric Materials, 1st ed., John Wiley & Sons, New York, NY(1997).
  4. Tyagi, S., Alavi, M., Bigwood, R., Bramblett, T., Brandenburg, J., Chen, W., Crew, B., Hussein, M., Jacob, P., Kenyon, C., Lo, C., Mcintyre, B., Ma, Z., Moon, P., Nguyen, P., Rumaner, L., Schweinfurth, R., Sivakumar, S., Stettler, M., Thompson, S., Tufts, B., Xu, J., Yang, S. and Bohr, M., "A 130 nm Generation Logic Technology Featuring 70 nm Transistors, Dual Vt Transistors and 6 layers of Cu Interconnects", Electron Devices Meeting, December, San Francisco (2000).
  5. Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. and Deligianni, H., "Damascene Copper Electroplating for Chip Interconnections," IBM J. Res. Dev., 42, 567-574(1998). https://doi.org/10.1147/rd.425.0567
  6. Andricacos, P. C., "Copper On-Chip Interconnections," J. Electrochem. Soc. Interface, 8, 32-37(1999).
  7. Murarka, S. P., "Multilevel interconnections for ULSI and GSI era," Mater. Sci. Eng. R, 19, 87-151(1997). https://doi.org/10.1016/S0927-796X(97)00002-8
  8. Rosenberg, R., Edelstein, D. C., Hu, C.-K. and Rodbell, K. P., "Copper Metallization for High Performance Silicon Technology," Annu. Rev. Mater. Sci., 30, 229-262(2000). https://doi.org/10.1146/annurev.matsci.30.1.229
  9. Theis, T. N., "The Future of Interconnection Technology," IBM J. Res. Dev., 44, 379-390 (2000). https://doi.org/10.1147/rd.443.0379
  10. Hu, C.-K., Luther, B., Kaufman, F. B., Hummel, J., Uzoh, C. and Pcarson, D. J., "Copper Interconnection Integration and Reliability," Thin Solid Films, 262, 84-92(1995). https://doi.org/10.1016/0040-6090(94)05807-5
  11. Zantye, P. B., Kumar, A. and Sikder, A. K., "Chemical Mechanical Planarization for Microelectronics Applications," Mat. Sci. Eng. R, 45, 89-220(2004). https://doi.org/10.1016/j.mser.2004.06.002
  12. Kwon, O. J., Cho, S. K. and Kim, J. J., "Electrochemical Metallization Processes for Copper and Silver Metal Interconnection," Korean Chem. Eng. Res., 47, 141-149(2009).
  13. Aksu, S. and Doyle, F. M., "Electrochemistry of Copper in Aqueous Ethylenediamine," J. Electrochem. Soc., 149, B340-B347 (2002). https://doi.org/10.1149/1.1481067
  14. Gorantla, V. R. K., Goia, D., Matijevic, E. and Babu, S. V., "Role of Amine and Carboxyl Functional Groups of Complexing Agents in Slurries for Chemical Mechanical Polishing of Copper," J. Electrochem. Soc., 152, G912-G916(2005). https://doi.org/10.1149/1.2083287
  15. Lee, J.-W., Kang, M.-C. and Kim, J. J., "Characterization of 5-Aminotetrazole as a Corrosion Inhibitor in Copper Chemical Mechanical Polishing," J. Electrochem. Soc., 152, C827-C831(2005). https://doi.org/10.1149/1.2104247
  16. Walker, R., "Triazole, Benzotriazole and Naphthotriazole as Corrosion Inhibitors for Copper," Corrosion, 31, 97-100(1975). https://doi.org/10.5006/0010-9312-31.3.97
  17. Mansfeld, F., Smith, T. and Parry, E. P., "Benzotriazole as Corrosion Inhibitor for Copper," Corrosion, 27, 289-294(1971). https://doi.org/10.5006/0010-9312-27.7.289
  18. Notoya, T. and Poling, G. W., "Protection of Copper by Pretreatment with Benzotriazole," Corrosion, 35, 193-200(1979). https://doi.org/10.5006/0010-9312-35.5.193
  19. Kester, J. J., Furtak, T. E. and Bevolo, A. J., "Surface Enhanced Raman Scattering in Corrosion Science: Benzotriazole on Copper," J. Electrochem. Soc., 129, 1716-1719(1982). https://doi.org/10.1149/1.2124256
  20. Nilsson, J.-O., Tornkvist, C. and Liedberg, B., "Photoelectron and Infrared Reflection Absorption Spectroscopy of Benzotriazole Adsorbed on Copper and Cuprous Oxide Surfaces," Appl. Surf. Sci., 37, 306-326(1989). https://doi.org/10.1016/0169-4332(89)90493-5
  21. Bazzi, L., Kertit, S. and Hamdani, M., "Some Organic Compounds as Inhibitors for the Corrosion of Aluminum Alloy 6063 in Deaerated Carbonate Solution," Corrosion, 51, 811-817(1995). https://doi.org/10.5006/1.3293558
  22. Kwon, O. J., Bae, J. H., Cho, B. K. and Kim, J. J., "Investigation of Cleaning Solution Composed of Citric Acid and 5-Aminotetrazole," Korean J. Chem. Eng., 28, 1619-1624(2011). https://doi.org/10.1007/s11814-011-0023-7
  23. Sherif, E. M., Erasmus, R. M. and Comins, J. D., "Effects of 3-amino-1,2,4-triazole on the Inhibition of Copper Corrosion in Acidic Chloride Solutions," J. Colloid. Interf. Sci., 311, 144-151(2007). https://doi.org/10.1016/j.jcis.2007.02.064
  24. Trachli, B., Keddam, M., Takenouti, H. and Srhiri, A., "Protective Effect of Electropolymerized 3-amino-1,2,4-triazole Towards Corrosion of Copper in 0.5M NaCl," Corrosion Sci., 44, 997-1008(2002). https://doi.org/10.1016/S0010-938X(01)00124-X
  25. Pichon, V. and Hennion, M.-C., "Comparison of on-line Enrichment Based on Ion-pair and Cation-exchange Liquid Chromatography for the Trace-level Determination of 3-amino-1,2,4- triazole (aminotriazole) in Water," Anal. Chim. Acta, 284, 317-326(1993). https://doi.org/10.1016/0003-2670(93)85316-C
  26. Li, S., Zhou, Z., Zhang, Y. and Liu, M., "1H-1,2,4-triazole: An Effective Solvent for Proton-conducting Electrolytes," Chem. Mater., 17, 5884-5886(2005). https://doi.org/10.1021/cm0515092
  27. Ogura, K., Nakaoka, K., Nakayama, M. and Tanaka, S., "A New Type of Electrochemical Formation of Copper Oxide During Redox Processes of the Copper(II)-glycine Complex at High pH," J. Electroanal. Chem., 511, 122-127(2001). https://doi.org/10.1016/S0022-0728(01)00568-X

Cited by

  1. 산화구리 잔유물 제거를 위한 카르복시산 함유 반수계 용액의 세정특성 vol.54, pp.4, 2015, https://doi.org/10.9713/kcer.2016.54.4.548