DOI QR코드

DOI QR Code

A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a

R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구

  • Cho, Honghyun (Department of Mechanical Engineering, Chosun University) ;
  • Park, Chasik (School of Mechanical Engineering, Hoseo University)
  • Received : 2015.04.17
  • Accepted : 2015.06.03
  • Published : 2015.07.10

Abstract

This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

Keywords

References

  1. Kornhuser, A., 1990, The use of an ejector as a refrigerant expander, In : International refrigeration and air condtioning conference, Paper, 82.
  2. Yari, M, 2008, Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander, Internatonal Journal of Exergy, Vol. 5, pp. 326-340. https://doi.org/10.1504/IJEX.2008.018114
  3. Nehdi, E., Kairouani, L., and Bouzaina, M., 2007, Performance analysis of the vapor compression cycle using ejector as an expander, International journal of energy research, Vol. 31, pp. 364-375. https://doi.org/10.1002/er.1260
  4. Bilir, N. and Kurasd Ersory, H., 2009, Peformance improvement of the vapour compression refrigeration cycle by a tow-phase constant area ejector, International journal of energy research, Vol. 33, pp. 469-480. https://doi.org/10.1002/er.1488
  5. Sarkar, J., 2010, Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants, International Journal of Energy Research, Vol. 20, pp. 871-885.
  6. Hu, J., Shi, J., Liang, Y., Yang, Z., and Chen, J., 2014, Numerical and experimental investigation on nozzle parameters for R410A ejector air conditioning system, International Journal of Refrigeration, Vol. 40, pp. 338-346. https://doi.org/10.1016/j.ijrefrig.2013.12.008
  7. Wongwise, S. and Disawas, S., 2005, Experimental investigation of the performance of the refrigeration cycle using a two-phase ejector as an expansion device, International Journal of Refrigeration, Vol. 27, No. 6, pp. 587-594. https://doi.org/10.1016/j.ijrefrig.2004.04.002
  8. Li, D. and Groll, A., 2005, Transcritical $CO_2$ refrigeration cycle with ejector-expansion device, International Journal of Refrigeration, Vol. 28, No.5, pp. 766-773. https://doi.org/10.1016/j.ijrefrig.2004.10.008
  9. Lee, J. S., Kim, M. S., and Kim, M. S., 2011, Experimental study on the improvement of $CO_2$ air conditioning system performance using an ejector, International Journal of Refrigeration, Vol. 34, No. 7, pp. 1614-1625. https://doi.org/10.1016/j.ijrefrig.2010.07.025
  10. Koban, M., 2009, HFO-1234yf low GWP refrigerant LCCP analysis, Proceedings of SAE world congress, Detroit, USA.
  11. Cho, H. H., Lee, H. S., Park, C. S., 2012, Performance Characteristics of a Drop-in System for a Mobile Air Conditoner Using Refrigerant R1234yf, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 24, No. 12, pp. 823-829. https://doi.org/10.6110/KJACR.2012.24.12.823
  12. Cho, H. H., Lee, H. S., and Park, C. S., 2012, Study on the performance improvement for an automobile air conditioning system using alternative refrigerant R1234yf, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 25, No. 4, pp. 201-207. https://doi.org/10.6110/KJACR.2013.25.4.201
  13. Sun, D. W. and Eames, I. W., 1996, Performance characteristics of HCFC-123 ejector refrigeration cycles, International Journal of Energy Research, Vol. 20, pp. 871-885. https://doi.org/10.1002/(SICI)1099-114X(199610)20:10<871::AID-ER201>3.0.CO;2-4
  14. Sun, D. W. and Eames, I. W., 1996, Variable geometry ejectors and their applications in ejector refrigeration systems, Energy, Vol. 21, pp. 919-929. https://doi.org/10.1016/0360-5442(96)00038-2
  15. Li, H., Cao, F., Bu, X., Wang, L., and Wang., X., 2014, Performance characteristics of R1234yf ejectorexpansion refrigeration cycle. https://doi.org/10.1016/j.apenergy.2014.01.079
  16. Chen, L. T., 1988, A new ejector-absorber cycle to improve the COP of an absorption refrigeration system, Applied energy, Vol. 30, pp. 37-51. https://doi.org/10.1016/0306-2619(88)90053-0
  17. Yapici, R. and Ersoy, H. K., 2005, Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model, Energy conversion and management, Vol. 46, pp. 3117-3135. https://doi.org/10.1016/j.enconman.2005.01.010
  18. Jianlin, Y., Hua, C., Yunfeng, R., and Yanzhong, L., 2006, A new ejector refrigeration system with an additional jet pump, Applied Thermal Engineering, Vol. 26, pp. 312-319. https://doi.org/10.1016/j.applthermaleng.2005.04.018
  19. Brunin, O., Feidt, M., and Hivet, B., 1997, Comparison of the working domains of some compression heat pumps and compression-absorption heat pump, International Journal of Refrigeration, Vol. 20, No.5, pp. 308-318. https://doi.org/10.1016/S0140-7007(97)00025-X
  20. Engieering Equation Solver Ver. 9.698, F-Chart software, 2014.
  21. Li, H., Cao, F., Wang, L., and Wang, X., 2014, Performance characteristics of R1234yf ejector-expansion refrigeration cycle, Applied energy, Vol. 121, pp. 96-103. https://doi.org/10.1016/j.apenergy.2014.01.079

Cited by

  1. Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 vol.28, pp.6, 2016, https://doi.org/10.6110/KJACR.2016.28.6.256