DOI QR코드

DOI QR Code

Impact of Cooking Method on Bioactive Compound Content and Antioxidant Capacity of Cabbage

양배추 가공조건에 따른 생리활성 물질의 함량 및 항산화 활성

  • Hwang, Eun-Sun (Department of Nutrition and Culinary Science, Hankyong National University) ;
  • Thi, Nhuan Do (Department of Nutrition and Culinary Science, Hankyong National University)
  • Received : 2015.01.09
  • Accepted : 2015.03.09
  • Published : 2015.04.30

Abstract

We evaluated the effects of three common cabbage cooking methods (blanching, steaming and microwaving) on glucosinolate and S-methylmethionine (SMM) content and total antioxidant capacity of cabbage leaves. We detected four glucosinolates, including glucoraphanin, sinigrin, glucobrassicin, and 4-methoxyglucobrassicin, by high-pressure liquid chromatography (HPLC). Cabbage contained high levels of SMM (192.85 mg/100 g dry weight), compared to other cruciferous vegetables. Blanching cabbage leaves for one to ten minutes decreased glucosinolate and SMM levels, whereas microwaving or steaming cabbage for 5-10 min preserved glucosinolate and SMM levels. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of cooked cabbage generally decreased as cooking time increased, but microwave cooking had a smaller negative effect on antioxidant activities than blanching or steaming. This study demonstrates that some domestic cooking methods, such as microwaving and steaming, can increase the bioaccessibility of glucosinolates and SMM, highlighting the positive role of cooking on the nutritional qualities of cabbage.

양배추를 각기 다른 방법(blanching, steaming, microwaving)으로 가열하면서 열처리 시간에 따른 glucosinolates와 SMM의 함량 변화 및 항산화 활성을 양배추 에탄올 추출물의 농도별로 측정하였다. 신선한 양배추 추출물에는 glucoraphanin, sinigrin, 4-methoxyglucobrassicin 및 glucobrassicin의 4종의 glucosinolates를 HPLC 분석방법으로 확인하였다. 양배추는 SMM 함량이 건조중량 100 g 당 192.85 mg으로 다른 십자화과 채소들에 비해 풍부하였다. 끓는 물에 데치는 조리법에 비해 스팀을 이용하여 찌거나 전자레인지로 가열하였을 때 glucosinolates와 SMM 함량이 높게 나타났으며 이는 다량의 물을 사용하여 끓이는 경우, 수용성이 강한 이들 물질들이 조리수로 용출되기 때문으로 사료된다. 소량의 물을 붓고 찌거나 전자레인지로 가열하는 경우는 glucosinolates 나 SMM이 조리수로 용출되는 것을 최소화하는 동시에 활성물질들이 열처리를 하는 동안 양배추 조직으로부터 분리되어 표면으로 노출되었기 때문으로 해석된다. DPPH와 ABTS 라디칼 소거능력을 통해 양배추 에탄올 추출물의 항산화 활성을 측정한 결과, 가열시간이 길어질수록 항산화 성분이 파괴되어 신선한 양배추에 비해 항산화 활성이 감소하는 것을 확인하였다. 따라서 양배추를 포함한 십자화과 채소의 주요 생리활성 물질인 glucosinolates나 SMM의 파괴를 최소화하기 위해서는 가열 방법과 가열시간을 적절히 선택하는 것이 중요하며, 가급적이면 장시간 동안 물에 끓이는 방법보다는 스팀을 이용하여 찌거나 전자레인지를 이용한 가열방법을 선택하는 것이 바람직할 것으로 사료된다.

Keywords

References

  1. McNaughton SA, Marks GC. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Brit. J. Nutr. 90: 687-697 (2003) https://doi.org/10.1079/BJN2003917
  2. Shim KH, Sung NK, Kang KS, Ahn CW, Seo KI. Analysis of glucosinolates and the change of contents during processing and storage in cruciferous vegetables. J. Korean Soc. Food Sci. Nutr. 21: 43-48 (1992)
  3. Wennberg M, Ekvall J, Olsson K, Nyman M. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem. 95: 226-236 (2006) https://doi.org/10.1016/j.foodchem.2004.11.057
  4. Agerbirk N, Olsen CE. Glucosinolate structures in evolution. Phytochemistry 77: 16-45 (2012) https://doi.org/10.1016/j.phytochem.2012.02.005
  5. Clarke DB. Glucosinolates, structures and analysis in food. Anal. Method. 2: 310-325 (2010) https://doi.org/10.1039/b9ay00280d
  6. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5-51 (2001) https://doi.org/10.1016/S0031-9422(00)00316-2
  7. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM. Glucosinolates in crop plants. Vol. 19, pp. 99-215. In: Horticultural Reviews. Janick J (ed). Wiley-Blackwell, NY, USA (1997)
  8. Fenwick GR, Heaney RK. Glucosinolates and their breakdown products in cruciferous crops, foods and feedingstuffs. Food Chem. 11: 249-271 (1983) https://doi.org/10.1016/0308-8146(83)90074-2
  9. Bones AM, Rossiter JT. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plantarum 97: 194-208 (1996) https://doi.org/10.1111/j.1399-3054.1996.tb00497.x
  10. Conaway CC, Yang YM, Chung FI. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr. Drug Metab. 3: 233-255 (2002) https://doi.org/10.2174/1389200023337496
  11. Gessler NN, Bezzubov AA, Podlepa EM, Bykhovski VY. S-methylmethionine (vitamin U) metabolism in plants. Appl. Biochem. Micro. 27: 275-280 (1991)
  12. Augspurger NR, Scherer CS, Garrow TA, Baker DH. Dietary smethylmethionine, a components of foods, has choline-sparing activity in chickens. J. Nutr. 135: 1712-1717 (2005)
  13. Hong EY, Kim GH. Changes in vitamin U and amino acid levels of Korean Chinese cabbages during kimchi fermentation. Korean J. Food Preserv. 12: 411-416 (2005)
  14. ISO. Rapeseed: determination of glucosinolates content-Part I: Method using high-performance liquid chromatography. ISO 9167-1:1992. International Standard Organization. Geneva, Switzerland. pp. 1-9 (1992)
  15. Cheung LM, Cheung PCK, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81: 249-255 (2003) https://doi.org/10.1016/S0308-8146(02)00419-3
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Gliszczynska-Swiglo A, Ciska E, Pawlak-Lemaska K, Chmielewski J, Borkowski T, Tyrakowska B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 23: 1088-1098 (2006)
  18. Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agr. Food Chem. 56: 139-147 (2008) https://doi.org/10.1021/jf072304b
  19. Vallejo F, Tomas-Barberan F, Garcia-Viguera C. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur. Food Res. Technol. 215: 310-316 (2002) https://doi.org/10.1007/s00217-002-0560-8
  20. Goodrich RM, Anderson JL, Stoewsand GS. Glucosinolate changes in blanched broccoli and brussels sprouts. J. Food Process. Pres. 13: 275-280 (1989) https://doi.org/10.1111/j.1745-4549.1989.tb00106.x
  21. Wathelet JP, Mabon N, Foucart M, Marlier M. Influence of blanching on the quality of Brussels sprouts (Brassica oleracea L. cv. gemmifera). Sci. Aliment. 16: 393-402 (1996)
  22. Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M. Thermal degradation of glucosinolates in red cabbage. Food Chem. 95: 19-29 (2006) https://doi.org/10.1016/j.foodchem.2004.12.013
  23. Verkerk R, Dekker M, Jongen WMF. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J. Sci. Food Agr. 81: 953-958 (2001) https://doi.org/10.1002/jsfa.854
  24. Benner M, Geerts RFR, Linnemann AR, Jongen WMF, Folstar P, Cnossen HJ. A chain information model for structured knowledge management: Towards effective and efficient food product improvement. Trends Food Sci. Tech. 14: 469-477 (2003) https://doi.org/10.1016/S0924-2244(03)00154-7
  25. Nyman M, Palsson KE, Asp NG. Effects of processing on dietary fibre in vegetables. LWT-Food Sci. Technol. 20: 29-36 (1987)
  26. Nugrahedi PY, Verkerk R, Widianarko B, Dekker M. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A review. Crit. Rev. Food Sci. 55: 823-838 (2015) https://doi.org/10.1080/10408398.2012.688076
  27. Kim GH. Determination of vitamin U in food plants. Food Sci. Technol. Int. 9: 316-319 (2003)
  28. Cho SD, Lee HH, Kim MS, Kim GH. Determination of SMM in Brassica vegetables by high performance liquid chromatography. Plant Resource Res. Inst. 12: 21-34 (2012)
  29. Zhang D, Hamauzu Y. Phenolics, ascoribc acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 88: 503-509 (2004) https://doi.org/10.1016/j.foodchem.2004.01.065
  30. Wachtel-Galor S, Won KW, Benzie IFF. The effect of cooking on Brassica vegetables. Food Chem. 110: 706-710 (2008) https://doi.org/10.1016/j.foodchem.2008.02.056
  31. Faller ALK, Fialho E. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Int. 42: 210-215 (2009) https://doi.org/10.1016/j.foodres.2008.10.009
  32. Pellegrini N, Chiavaro E, Gardana C, Mazzeo T, Contino D, Gallo M, Riso P, Fogliano V, Porrini M. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J. Agr. Food Chem. 58: 4310-4321 (2010) https://doi.org/10.1021/jf904306r
  33. Ng ZX, Chai JW, Kuppusamy UR. Customized cooking method improves total antioxidant activity in selected vegetables. Int. J. Food Sci. Nutr. 62: 158-163 (2011) https://doi.org/10.3109/09637486.2010.526931
  34. Harbaum B, Hubbermann EM, Zhu Z, Schwarz K. Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). J. Agr. Food Chem. 56: 148-157 (2008) https://doi.org/10.1021/jf072428o

Cited by

  1. Investigation of glucosinolates, and the antioxidant activity of Dolsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS vol.41, pp.3, 2017, https://doi.org/10.1111/jfbc.12366
  2. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing vol.3, 2016, https://doi.org/10.3389/fnut.2016.00024
  3. Quality Characteristics of Cabbage Rice Nutritional Bars Made with Varying Ratios of Cabbage Powder vol.32, pp.4, 2016, https://doi.org/10.9724/kfcs.2016.32.4.441