DOI QR코드

DOI QR Code

Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology

반응표면분석법을 이용한 차가버섯(Inonotus obliquus)의 생리활성물질 최적 추출조건 탐색

  • Kim, Jaecheol (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Yi, Haechang (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Lee, Kiuk (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Hwang, Keum Taek (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Yoo, Gichun (DHF Co., Ltd.)
  • 김재철 (서울대학교 식품영양학과.생활과학연구소) ;
  • 이해창 (서울대학교 식품영양학과.생활과학연구소) ;
  • 이기욱 (서울대학교 식품영양학과.생활과학연구소) ;
  • 황금택 (서울대학교 식품영양학과.생활과학연구소) ;
  • 유기춘 ((주)디에이치에프)
  • Received : 2015.01.29
  • Accepted : 2015.03.11
  • Published : 2015.04.30

Abstract

This study determined the optimum extraction conditions based on five response variables (yield, total phenolics, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavanging activity, oxygen radical absorbance capacity (ORAC), and ${\beta}$-1,3-glucan content) in chaga mushroom (Inonotus obliquus) using the response surface methodology, where three independent variables (ethanol concentration, extraction temperature, and extraction time) were optimized using a central composite design. The optimum ethanol concentration, extraction temperature, and extraction time were 50% (w/w), $88.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 14.5 h; 50.8%, $92.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 1.5 h; and 90.8%, $92.7^{\circ}C$, and 1.5 h for yield, total phenolics, ABTS, ORAC, and ${\beta}$-1,3-glucan content, respectively. The predicted values of the response variables were compared with those of the extracts under the optimal extraction conditions to verify the models. The optimum extraction condition for the five response variables was predicted to be 81.4% ethanol at $92.7^{\circ}C$ for 14.5 h.

본 연구에서는 차가버섯(Inonotus obliquus)의 유효성분과 항산화능이 최대가 되는 추출물의 제조를 위하여 반응표면분석법을 이용하여 최적 추출조건을 탐색하였다. 추출 수율, 총 폴리페놀 함량, 항산화능(ABTS 자유 라디칼 소거능, ORAC), ${\beta}$-1,3-glucan 함량의 총 다섯 가지 반응변수에서 유의적인 이차 회귀식을 얻었고, 반응표면그래프와 등고선도를 통하여 최적 추출조건을 예측하였다. 각 반응변수에 따른 최적 추출조건은 추출 수율에서 50% (v/v), $88.7^{\circ}C$, 14.5 h, 총 폴리페놀 함량에서 9.2%, $92.7^{\circ}C$, 14.5 h, ABTS free radical scavanging activity에서 50.8%, $92.7^{\circ}C$, 14.5 h, ORAC에서 9.2%, $92.7^{\circ}C$, 1.5 h, ${\beta}$-1,3-glucan 함량에서 90.8%, $92.7^{\circ}C$, 1.5 h으로 예측되었다. 각 반응변수의 예측 최대추출조건에서 실제 실험을 실행하여 예측 값과 비교해본 결과, 상대오차는 0.4-12.5%였다. 각 반응 변수에서 유의적인 이차 회귀식을 얻었으며, 예측 값과 실험 값의 오차가 크지 않아 반응표면모델이 최적 추출조건을 예측하는데 적합하다고 판단하였으며, 다섯 가지 반응 변수를 통합하는 최적 추출조건은 81.4%, $92.7^{\circ}C$, 14.5 h으로 예측하였다. 본 연구는 주로 열수추출물의 형태로 유통되는 차가버섯 추출물의 품질 개선을 위하여 에탄올 용매를 포함한 최적 추출조건을 설정하였고, 구체적인 추출 수율과 생리활성물질 함량 및 항산화능이 최대가 되는 추출조건을 제시하였다.

Keywords

References

  1. Park KC, Kil KJ, Lee YJ. The Comparative study of the effects of fructificatio Inonoti obliqui aqueous extract according to the extraction temperature (I) -Anti-oxidative effect-. Korean J. Herbology 22: 177-185 (2007)
  2. Cui Y, Kim DS, Park KC. Antioxidant effect of Inonotus obliquus. J. Ethnopharmacol. 96: 79-85 (2005) https://doi.org/10.1016/j.jep.2004.08.037
  3. Liang L, Zhang Z, Wang H. Antioxidant activities of extracts and subfractions from Inonotus obliquus. Int. J. Food Sci. Nutr. 60: 175-184 (2009) https://doi.org/10.1080/09637480903042279
  4. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agr. Food Chem. 56: 7265-7270 (2008) https://doi.org/10.1021/jf8008553
  5. Goodridge HS, Wolf AJ, Underhill DM. ${\beta}$-Glucan recognition by the innate immune system. Immunol. Rev. 230: 38-50 (2009) https://doi.org/10.1111/j.1600-065X.2009.00793.x
  6. Chan GC, Chan WK, Sze DM. The effects of ${\beta}$-glucan on human immune and cancer cells. J. Hematol. Oncol. 2: 25-35 (2009) https://doi.org/10.1186/1756-8722-2-25
  7. Hazama S, Watanabe S, Ohashi M, Yagi M, Suzuki M, Matsuda K, Yamamoto T, Suga Y, Suga T, Nakazawa S, Oka M. Efficacy of orally administered superfine dispersed lentinan (${\beta}$-1,3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res. 29: 2611-2617 (2009)
  8. Sim CH. Application of response surface methodology for the optimization of process in food technology. Food Eng. Prog. 15: 97-115 (2011)
  9. Bas D, Boyaci IH. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78: 836-845 (2007) https://doi.org/10.1016/j.jfoodeng.2005.11.024
  10. XuJie H, Wei C. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohyd. Polym. 72: 67-74 (2008) https://doi.org/10.1016/j.carbpol.2007.07.034
  11. Liu J, Miao S, Wen X, Sun Y. Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM). Carbohyd. Polym. 78: 704-709 (2009) https://doi.org/10.1016/j.carbpol.2009.06.003
  12. Giri SK, Prasad S. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology. Dry Technol. 25: 901-911 (2007) https://doi.org/10.1080/07373930701370407
  13. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method. Enzymol. 299: 152-178 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  14. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  15. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50: 4437-4444 (2002) https://doi.org/10.1021/jf0201529
  16. Ko YT, Lin YL. 1,3-${\beta}$-Glucan quantification by a fluorescence microassay and analysis of its distribution in foods. J. Agr. Food Chem. 52: 3313-3318 (2004) https://doi.org/10.1021/jf0354085
  17. Choi MA, Park NY, Woo SM, Jeong YJ. Optimization of extraction conditions from Hericium erinaceus by response surface methodology. Korean J. Food Sci. Technol. 35: 777-782 (2003)
  18. Lee HJ, Do JR, Chung MY, Kim HK. Optimization of extraction conditions of Pleurotus cornucopiae by response surface methodology. J. Korean Soc. Food Sci. Nutr. 43: 1565-1570 (2014) https://doi.org/10.3746/jkfn.2014.43.10.1565
  19. Kang BH, Lee JM, Kim YK. Optimization of hot water extraction conditions for Tricholoma matsutake by response surface methodology. J. Korean Soc. Food Sci. Nutr. 39: 1206-1212 (2010) https://doi.org/10.3746/jkfn.2010.39.8.1206
  20. Silva EM, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 55: 381-387 (2007) https://doi.org/10.1016/j.seppur.2007.01.008
  21. Guo X, Zou X, Sun M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius. Carbohyd. Polym. 80: 344-349 (2010) https://doi.org/10.1016/j.carbpol.2009.11.028

Cited by

  1. Characteristics and Sensory Optimization of Taro (Colocasia esculenta) under Different Aging Conditions for Food Application of Black Taro vol.48, pp.2, 2016, https://doi.org/10.9721/KJFST.2016.48.2.133