DOI QR코드

DOI QR Code

Total Phenolics, Total Flavonoids, and Antioxidant Capacity in the Leaves, Bulbs, and Roots of Allium hookeri

삼채의 잎, 인경, 뿌리의 총페놀 함량, 총플라보노이드 함량 및 항산화능

  • Hwang, Jeong-Seung (Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Bong Han (Graduate School of Biotechnology, Kyung Hee University) ;
  • An, Xiangxue (Skin Biotechnology Center, Kyung Hee University) ;
  • Jeong, Ha Ram (Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Young-Eun (Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Inil (Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Hyungjae (Department of Food Engineering, Dankook University) ;
  • Kim, Dae-Ok (Graduate School of Biotechnology, Kyung Hee University)
  • 황정승 (경희대학교 생명공학원) ;
  • 이봉한 (경희대학교 생명공학원) ;
  • 안향설 (경희대학교 피부생명공학센터) ;
  • 정하람 (경희대학교 생명공학원) ;
  • 김영은 (경희대학교 생명공학원) ;
  • 이인일 (경희대학교 생명공학원) ;
  • 이형재 (단국대학교 식품공학과) ;
  • 김대옥 (경희대학교 생명공학원)
  • Received : 2014.11.12
  • Accepted : 2015.02.02
  • Published : 2015.04.30

Abstract

To quantitatively evaluate the total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of fresh Allium hookeri, they were extracted using various solvents including water, aqueous methanol (20, 40, 60, and 80%; v/v), and absolute methanol. The leaves had the highest levels of total phenolics (240.4-276.6 mg gallic acid equivalents/100 g) and total flavonoids (9.7-34.1 mg catechin equivalents/100 g). The highest antioxidant capacities of 78.7- 103.4 mg vitamin C equivalents (VCE)/100 g, 24.4-59.0 mg VCE/100 g, and 1,798.8-2,169.7 mg VCE/100 g in the leaves were also observed using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) assays, respectively. The total phenolics had a higher linear correlation with antioxidant capacity than the total flavonoids. In general, 60% (v/v) aqueous methanol extract had higher levels of total phenolics and flavonoids, and higher antioxidant capacity than any other solvents used. This study suggested that A. hookeri might be a good source of phenolics and antioxidants.

삼채의 잎, 인경, 뿌리 세 부위를 물, 메탄올-물 혼합용매, 무수 메탄올을 이용하여 추출물을 제조한 후, 총페놀 함량, 총플라보노이드 함량 및 항산화능을 정량 분석하였다. 삼채의 부위별 총페놀 함량은 잎이 240.4-276.6 mg GAE/100 g FW, 인경이 65.5-82.8 mg GAE/100 g FW, 뿌리가 50.0-59.4 mg GAE/100 g FW를 보였다. 삼채의 부위별 총플라보노이드 함량은 잎에서 9.7-34.1 mg CE/100 g FW, 인경에서 5.0-16.7 mg CE/100 g FW, 뿌리에서는 4.4-15.3 mg CE/100 g FW로 나타났다. ABTS법, DPPH법, ORAC법을 통한 항산화능은 잎에서 각각 78.7-103.4, 24.4-59.0, 1,798.8-2,169.7 mg VCE/100 g FW, 인경에서는 35.8-51.1, 9.3-26.3, 415.3-611.7 mg VCE/100 g FW, 뿌리에서는 42.0-55.9, 12.8-24.4, 291.7-429.4 mg VCE/100 g FW을 보였다. 삼채 잎, 인경, 뿌리 중에서 잎이 가장 높은 총페놀 함량, 총플라보노이드 함량 및 항산화능을 가졌다. 6가지 추출용매에서 60% (v/v) 메탄올-물 혼합용매에서 주로 높은 활성을 나타냈다. 항산화능은 총플라보노이드 함량보다 총페놀 함량과 더 높은 상관관계를 보였다. 본 연구의 결과는 삼채가 높은 항산화능 공급할 수 있는 원료로서의 가능성을 보여 주었다는데 의의가 있다.

Keywords

References

  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247 (2000) https://doi.org/10.1038/35041687
  2. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS ONE 8: e54059 (2013) https://doi.org/10.1371/journal.pone.0054059
  3. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5: 9-19 (2012) https://doi.org/10.1097/WOX.0b013e3182439613
  4. Hung LM, Chen JK, Huang SS, Lee RS, Su MJ. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 47: 549-555 (2000) https://doi.org/10.1016/S0008-6363(00)00102-4
  5. Apak R, Gorinstein S, Böhm V, Schaich KM, Ozyurek M, Guclu K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure Appl. Chem. 85: 957-998 (2013)
  6. Ernst MK, Chatterton NJ, Harrison PA, Matitschka G. Characterization of fructan oligomers from species of the genus Allium L. J. Plant Physiol. 153: 53-60 (1998) https://doi.org/10.1016/S0176-1617(98)80044-8
  7. Ariga T, Seki T. Antithrombotic and anticancer effects of garlicderived sulfur compounds: A review. Biofactors 26: 93-103 (2006) https://doi.org/10.1002/biof.5520260201
  8. Prakash D, Singh BN, Upadhyay G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 102: 1389-1393 (2007) https://doi.org/10.1016/j.foodchem.2006.06.063
  9. Tsao SM, Yin MC. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J. Med. Microbiol. 50: 646-649 (2001) https://doi.org/10.1099/0022-1317-50-7-646
  10. El-Demerdash FM, Yousef MI, El-Naga NIA. Biochemical study on the hypoglycemic effects of onion and garlic in alloxaninduced diabetic rats. Food Chem. Toxicol. 43: 57-63 (2005) https://doi.org/10.1016/j.fct.2004.08.012
  11. Ayam VS. Allium hookeri, Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. Afr. J. Food Agr. Nutr. Dev. 11: 5389-5412 (2011)
  12. Bae GC, Bae DY. The anti-inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Kor. J. Herbology 27: 55-61 (2012)
  13. Kim CH, Lee MA, Kim TW, Jang JY, Kim HJ. Anti-inflammatory effect of Allium hookeri root methanol extract in LPSinduced RAW264.7 cells. J. Korean Soc. Food Sci. Nutr. 41: 1645-1648 (2012) https://doi.org/10.3746/jkfn.2012.41.11.1645
  14. MladenovicJD, MasovicPZ, PavlovicRM, RadovanovicBC, AcmovicĐkovicG, CvijovicMS. Antioxidant activity of ultrasonic extracts of leek Allium porrum L. Hem. Ind. 65: 473-477 (2011) https://doi.org/10.2298/HEMIND110301033M
  15. Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
  16. Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agr. Food Chem. 50: 3713-3717 (2002) https://doi.org/10.1021/jf020071c
  17. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  18. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50: 4437-4444 (2002) https://doi.org/10.1021/jf0201529
  19. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99: 191-203 (2006) https://doi.org/10.1016/j.foodchem.2005.07.042
  20. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333 (1998)
  21. Won JY, Yoo YC, Kang EJ, Yang H, Kim GH, Seong BJ, Kim SI, Han SH, Lee SS, Lee KS. Chemical components, DPPH radical scavenging activity and inhibitory effects on nitric oxide production in Allium hookeri cultivated under open field and greenhouse conditions. J. Korean Soc. Food Sci. Nutr. 42: 1351-1356 (2013) https://doi.org/10.3746/jkfn.2013.42.9.1351
  22. Djurdjevic L, Dinic A, Pavlovic P, Mitrovic M, Karadzic B, Tesevic V. Allelopathic potential of Allium ursinum L. Biochem. Syst. Ecol. 32: 533-544 (2004) https://doi.org/10.1016/j.bse.2003.10.001
  23. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013: 162750 (2013)
  24. Kim MH, Jo SH, Jang HD, Lee MS, Kwon YI. Antioxidant activity and ${\alpha}$-glucosidase inhibitory potential of onion (Allium cepa L.) extracts. Food Sci. Biotechnol. 19: 159-164 (2010) https://doi.org/10.1007/s10068-010-0022-1
  25. Fidrianny I, Permatasari L, Wirasutisna KR. Antioxidant activities from various bulbs extracts of three kinds allium using DPPH, ABTS assays and correlation with total phenolic, flavonoid, carotenoid content. Int. J. Res. Pharm. Sci. 4: 438-444 (2013)

Cited by

  1. Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea vol.56, pp.6, 2015, https://doi.org/10.1007/s13580-015-1085-y
  2. Allium hookeri root extract exerts anti-inflammatory effects by nuclear factor-κB down-regulation in lipopolysaccharide-induced RAW264.7 cells vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1633-3
  3. Effect of Allium hookeri Root on Plasma Blood Glucose and Fat Profile Levels in Streptozotocin-Induced Diabetic Rats vol.26, pp.6, 2016, https://doi.org/10.17495/easdl.2016.12.26.6.481
  4. The Hypolipidemic Effect of Allium Hookeri in Rats Fed with a High Fat Diet vol.27, pp.1, 2016, https://doi.org/10.7856/kjcls.2016.27.1.137
  5. Antioxidative Effects of Extracts from Different Parts of Epimedium koreanum Nakai vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.188
  6. Samardala: specificities and changes in the ethnobotanical knowledge about Allium siculum subsp. dioscoridis (Sm.) K. Richt. in Bulgaria vol.65, pp.5, 2018, https://doi.org/10.1007/s10722-018-0618-5