DOI QR코드

DOI QR Code

Antioxidant and α-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions

단풍취 추출물 및 분획물의 항산화 및 α-glucosidase 저해 활성 평가

  • Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University) ;
  • Kim, Taewan (Department of Food Science and Biotechnology, Andong National University) ;
  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Andong National University) ;
  • Park, Youn-Moon (Department of Food Science and Biotechnology, Andong National University) ;
  • Kim, Seong-Ho (Department of Food Science and Biotechnology, Daegu University) ;
  • Im, Moo-Hyeog (Department of Food Science and Biotechnology, Daegu University) ;
  • Kwak, Jae Hoon (Faculty of Biotechnology Convergence, Daegu Haany University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 이은우 (동의대학교 생명응용학과) ;
  • 김태완 (안동대학교 식품생명공학과) ;
  • 김현석 (안동대학교 식품생명공학과) ;
  • 박윤문 (안동대학교 식품생명공학과) ;
  • 김성호 (대구대학교 식품공학과) ;
  • 임무혁 (대구대학교 식품공학과) ;
  • 곽재훈 (대구한의대학교 바이오산업융합학부) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2014.09.05
  • Accepted : 2014.12.05
  • Published : 2015.04.30

Abstract

Among the naturally occurring antioxidants, polyphenols are widely distributed in various fruits, vegetables, wines, juices, and plant-based dietary sources and divided into several subclasses that included phenolic acid, flavonoids, stilbenes, and lignans. As part of our continuing search for bioactive food ingredients, the antioxidant and ${\alpha}$-glucosidase inhibitory activities of the aqueous ethanolic extract from the aerial parts of Ainsliaea acerifolia were investigated in vitro. The antioxidant properties were evaluated via radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the anti-diabetic effect of A. acerifolia extracts was tested via ${\alpha}$-glucosidase inhibitory assay. Furthermore, the total phenolic contents were determined using a spectrophotometric method. All the tested samples showed dose-dependent radical scavenging and ${\alpha}$-glucosidase inhibitory activities. In particularly, the ${\alpha}$-glucosidase inhibitory and radical scavenging properties of the ethyl acetate (EtOAc)-soluble portion from the aerial parts of the A. acerifolia were higher than those of the other solvent-soluble portions. These results suggest that A. acerifolia could be considered a new potential source of natural antioxidants and antidiabetic ingredients. More systematic investigation of the aerial parts of A. acerifolia will be performed for the further development of anti-oxidative and antidiabetic drugs.

단풍취를 70% 에탄올로 침지 추출하여 얻어진 추출물에 대해 n-hexane, EtOAc 및n-BuOH로 순차 용매 분획하였고, 얻어진 결과물에 대하여 DPPH와 $ABTS^+$ radical 소거능 및 ${\alpha}$-glucosidase 저해활성을 평가하였다. DPPH 라디칼 소거능은 페놀성 화합물의 함량이 상대적으로 높은 EtOAc층에서 $IC_{50}$ 값이 $23.4{\pm}0.3mg/mL$으로 강한 DPPH 라디칼 소거능을 확인하였고, 단풍취 추출물에 존재하는 페놀성 화합물과 라디칼 소거능과의 연관성을 시사하였다. 또한 $ABTS^+$ 라디칼 소거능은 EtOAc층의 $IC_{50}$ 값이 $19.9{\pm}2.3mg/mL$, n-BuOH층이 $IC_{50}$ 값이 $23.4{\pm}0.3mg/mL$의 우수한 라디칼 소거활성이 확인 되었고, 강한 활성물질의 존재가 시사되었다. 또한, ${\alpha}$-glucosidase 저해활성을 측정한 결과, 강한 $ABTS^+$ 라디칼 소거능을 나타낸 EtOAc 층의 $IC_{50}$$103.4{\pm}1.0mg/mL$의 저해활성을 나타내었으며 이는 positive control인 acarbose에 비해 우수한 활성이었으며, 추출물 상태의 시료를 단일물질로 정제할 경우 더욱 강한 효능의 화합물이 존재할 가능성을 시사하였다. 향후 이들 활성물질 동정을 통한 활성 기작에 대한 연구가 필요하며 본 연구 결과는 보다 우수한 라디칼 소거능 및 ${\alpha}$-glucosidase 저해능을 가지는 새로운 기능성 식품소재 발굴을 위한 기초자료로 활용가능하리라 사료된다.

Keywords

References

  1. Videla LA, Fermandez V (1988) Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp, 21, 85-92
  2. Halliwell B, Aruoma OJ (1991) DNA damage by oxygen-derived species. FEBS Lett, 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH (1988) New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med, 5, 111-117 https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  5. Farag RS, Badei AZMA, Hewedi FM, El-Baroty GSA (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J American Oil Chem Soc, 66, 792-799 https://doi.org/10.1007/BF02653670
  6. Frei B (1994) National antioxidants in human health and disease, Academic Press, San Diego, p 44-55
  7. Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J Oil Chem Soc, 52, 59-62 https://doi.org/10.1007/BF02901825
  8. Matsuoka A, Furuta A, Ozaki M, Fukuhara K, Miyata N (2001) Resveratrol, a naturally occurring polyphenol, induces sister chromatid exchanges in a Chinese hamster lung (CHL) cell line. Mutat Res, 107, 494-495
  9. Rubin RR, Peyrot M (1999) Quality of life and diabetes. Diabetes Metab Res Rev, 15, 205-218 https://doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<205::AID-DMRR29>3.0.CO;2-O
  10. Lee SH, Lee JK, Kim IH (2012) Trends and perspectives in the development of antidiabetic drugs for type 2 diabetes mellitus. Korean J Microbiol Biotechnol, 40, 180-185 https://doi.org/10.4014/kjmb.1205.05012
  11. Lee EB, Na GH, Ryu CR, Cho MR (2004) The review on the study of diabetes mellitus in Oriental medicine journals. J Korean Orient Med, 25, 169-179
  12. Schwarz K, Mertz W (1959) Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys, 85, 292-295 https://doi.org/10.1016/0003-9861(59)90479-5
  13. Paul R, Jamie H, Phuong OT, Vincent P (2004) ${\beta}$-Cell glucose toxicity, lipotoxicity and chronic oxidative stress in type 2 diabetes. Diabetes, 53, 5119-5124
  14. Tsujimoto T, Shioyama E, Moriya K, Kawaratani H, Shirai Y, Toyohara M, Mitoro A, Yamao J, Fujii H, Fukui H (2008) Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment : a case report and review of the literature. World J Gastroenterol, 14, 6087-6092 https://doi.org/10.3748/wjg.14.6087
  15. Kihara Y, Ogami Y, Tabaru A, Unoki H, Otsuki M (1997) Safe and effective treatment of diabetes mellitus associated with chronic liver diseases with an alpha-glucosidase inhibitor, acarbose. J Gastroenterol, 32, 777-782 https://doi.org/10.1007/BF02936954
  16. Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR (2000) Phytochemical constituents of Ainsliaea acerifolia. Korean J Pharmacogn, 31, 125-129
  17. Bohlmann F, Chen ZL (1982) Guaianolides from Ainsliaea fragrans. Phytochem, 21, 2120-2122 https://doi.org/10.1016/0031-9422(82)83061-6
  18. Adegawa S, Miyase T, Ueno A (1987) Sesquiterpene lactones from Diaspananthus uniflorus. Chem Pharm Bull, 35, 1479-1485 https://doi.org/10.1248/cpb.35.1479
  19. Miyase T, Ozaki H, Ueno A (1991) Sesquiterpene glycosides from Aisliaea cordifolia Franch. et Sav. Chem Pharm Bull, 39, 937-938 https://doi.org/10.1248/cpb.39.937
  20. Jin H (1982) Studies on the constituents of Ainsliaea acerifolia Sch. -Bip. var. subapoda Nakai. Yakugaku Zasshi, 102, 911-922
  21. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidnt activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK, Lee MS, Kim YM (2012) ${\alpha}$-glucosidase and ${\alpha}$ -amylase inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric, 92, 2084-2090 https://doi.org/10.1002/jsfa.5585
  24. Gao X, Bjor, L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test system. J Sci Food Agric, 80, 2021-2027 https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  25. Lee S G, Yu MH, Lee S P, Lee IS (2008) Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J Korean Soc Food Sci Nutr, 37, 269-275 https://doi.org/10.3746/jkfn.2008.37.3.269
  26. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactucaindica. J Agric Food Chem, 26, 1506-1512
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  28. Shin JA, Lee JH, Kim HS, Choi JH, Yoon KH (2012) Prevention of diabetes : a strategic approach for individural patients. Diabets Metab Res Rev, 28, 79-84 https://doi.org/10.1002/dmrr.2357
  29. Bischoff H (1995) The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med, 18, 303-311
  30. Nguyen MTT, Nguyen NTM, Nguyen HX, Huynh TNN, Min BS (2012) Screening of a-glucosidase inhibitory activity of Vietnamese medicinal plants : isolation of active principles from Oroxylum indicum. Nat Prod Sci, 18, 47-51

Cited by

  1. Free radical scavenging and α-glucosidase inhibitory effects of a roots extract of Aruncus dioicus var. kamtschaticus vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.989
  2. Anti-inflammatory effect of zaluzanin C on lipopolysaccharide-stimulated murine macrophages vol.48, pp.4, 2016, https://doi.org/10.9721/KJFST.2016.48.4.392
  3. 플라즈마 처리 phloridzin 반응물의 생리활성 평가 vol.24, pp.3, 2015, https://doi.org/10.11002/kjfp.2017.24.3.483
  4. Zaluzanin C Inhibits Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes vol.28, pp.2, 2015, https://doi.org/10.7570/jomes.2019.28.2.105
  5. Recent trends in anti-obesity and anti-inflammatory studies in modern health care vol.27, pp.5, 2015, https://doi.org/10.3233/thc-191736