DOI QR코드

DOI QR Code

Evaluation of Thermal Movements of a Cable-Stayed Bridge Using Temperatures and Displacements Data

온도와 변위 데이터를 이용한 사장교의 온도신축거동 평가

  • 박종칠 (한국도로공사 도로교통연구원)
  • Received : 2015.04.14
  • Accepted : 2015.07.02
  • Published : 2015.08.01

Abstract

Because cable-supported bridges have long spans and large members, their movements and geometrical changes by temperatures tend to be bigger than those of small or medium-sized bridges. Therefore, it is important for maintenance engineers to monitor and assess the effect of temperature on the cable-supported bridges. To evaluate how much the superstructure expands or contracts when subjected to changes in temperature is the first step for the maintenance. Thermal movements of a cable-stayed bridge in service are evaluated by using long-term temperatures and displacements data. Displacements data are obtained from extensometers and newly installed GNSS (Global Navigation Satellite System) receivers on the bridge. Based on the statistical data such as air temperatures, each sensor's temperatures, average temperatures and effective temperatures, correlation analysis between temperatures and displacements has been performed. Average temperatures or effective temperatures are most suitable for the evaluation of thermal movements. From linear regression analysis between effective temperatures and displacements, the variation rate's of displacement to temperature have been calculated. From additional regression analysis between expansion length's and variation rate's of displacement to temperature, the thermal expansion coefficient and neutral point have been estimated. Comparing these parameters with theoretical and analytical results, a practical procedure for evaluating the real thermal behaviors of the cable-supported bridges is proposed.

케이블교량은 교량길이가 길고 규모가 크기 때문에 온도에 의한 이동량과 형상변화는 일반교량보다 훨씬 크다. 따라서 공용 중 온도영향을 분석, 평가하는 것이 중요하며, 온도영향은 온도변화에 따라 교량 상부구조계가 늘어나거나 줄어드는 온도신축거동을 평가하는 것이 가장 기본이다. 이에 공용 중인 사장교에서 장기간 계측된 온도와 이종 변위 데이터를 활용하여 실제적인 온도신축거동을 평가하고자 하였다. 변위 데이터는 기존 신축변위계와 함께 새롭게 도입된 GNSS(Global Navigation Satellite System) 수신기에서 계측된 데이터를 활용하였다. 먼저 외기온도, 개별온도, 평균온도, 유효온도의 다양한 온도 조합에 대한 신축거동의 상관성을 분석하여 부재의 평균온도나 유효온도를 사용하는 것이 합리적임을 확인하였다. 부재 유효온도와 신축량의 선형회귀분석으로부터 단위온도신축량을 산정하고, 추가적으로 신축길이와 계측 단위온도 신축량의 선형회귀분석으로부터 선팽창계수와 중립점의 위치를 산정할 수 있었다. 이를 이론과 해석 결과와 비교함으로써 케이블교량의 실제 온도신축거동의 건전성을 평가할 수 있는 방안을 제시하였다.

Keywords

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (2012). AASHTO LRFD bridge design specifications, Washington.
  2. Bae, I. H. (2011). "Measurement analysis and management of special bridges." Annual Seminar on the Operation and Maintenance of Cable-Supported Bridges in Korea, The New Airport Highway Corporation (in Korean).
  3. Bae, I. H., Choi, B. K. and Na, W. C. (2013). "Analysis of long-term behaviors and emergency measures of long span cable-supported bridge using the structural health monitoring system." Proceedings of Korean Society of Civil Engineers 2013 Convention, pp. 876-879 (in Korean).
  4. Gil, H. B., Park, J. C., Cho, J. S. and Jung, G. J. (2010). "Renovation of structural health monitoring system for Seohae Bridge." Journal of the Transportation Research Board, No. 2201, pp. 131-138.
  5. Kang, G. H. (2008). A study on the condition assessment method of bridge joints using long-term displacement measurement data, Master's Thesis, University of Seoul (in Korean).
  6. Kim, S. K., Koh, H. M., Lee, J. H. and Bae, I. H. (2006). "Signal analysis from a long-term bridge monitoring system in Yongjong Bridge." Journal of the Earthquake Engineering Society of Korea, Vol. 10, No. 6, pp. 9-18.
  7. Korea Infrastructure Safety and Technology Corporation (KISTEC) (2015). Final report on maintenance work of special bridges in national highway (in Korean).
  8. Naoaki, S. (2003) "Long term monitoring in Akashi Kaikyo Bridge." Bridge and Foundation, Vol. 37, No. 6, pp. 21-25 (in Japanese).
  9. Ni, Y. Q., Hua, X. G., Wong, K. Y. and Ko, J. M. (2007). "Assessment of bridge expansion joints using long-term displacement and temperature measurement." Journal of Performance of Constructed Facilities, Vol. 21, No. 2, pp. 143-151. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:2(143)
  10. Park, J. C., Park, C. M. and Song, P. Y. (2004). "Evaluation of structural behaviors using full scale measurements on the Seo Hae Cable-stayed Bridge." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 2A, pp. 249-257 (in Korean).
  11. Park, J. H. (2015). The optimum design of expansion joints by long-term monitoring data for the Diamond Bridge, Master's Thesis, Pukyong National University (in Korean).
  12. Xu, Y. L., Chen, B., Ng, C. L., Wong, K. Y. and Chan, W. Y. (2010). "Monitoring temperature effect on a long suspension bridge." Structural Control and Health Monitoring, Vol. 17, No. 6, pp. 632-653. https://doi.org/10.1002/stc.340
  13. Zhou, Y. and Sun, L. (2014). "Temperature effects on performance of long-span cable-stayed bridges." The 6th World Conference on Structural Control and Monitoring, Barcelona, Spain, pp. 432-444.