DOI QR코드

DOI QR Code

An estimation method for stochastic reaction model

확률적 방법에 기반한 화학 반응 모형의 모수 추정 방법

  • Choi, Boseung (Department of Statistics and Computer Science, Daegu University)
  • Received : 2015.04.18
  • Accepted : 2015.06.03
  • Published : 2015.07.31

Abstract

This research deals with an estimation method for kinetic reaction model. The kinetic reaction model is a model to explain spread or changing process based on interaction between species on the Biochemical area. This model can be applied to a model for disease spreading as well as a model for system Biology. In the search, we assumed that the spread of species is stochastic and we construct the reaction model based on stochastic movement. We utilized Gillespie algorithm in order to construct likelihood function. We introduced a Bayesian estimation method using Markov chain Monte Carlo methods that produces more stable results. We applied the Bayesian estimation method to the Lotka-Volterra model and gene transcription model and had more stable estimation results.

본 연구는 화학 반응 모형의 추정 문제를 다루고 있다. 화학 반응 모형이란 생화학 분야에서 종(species) 들 간의 상호작용을 통한 변화 과정을 설명하기 위한 모형으로 생화학 분야 뿐 만 아니라 질병의 확산과정을 설명하는데 적용하는 모형이다. 본 연구에서는 화학 반응 모형 안에서 종들의 움직임이 확률적이라는 가정하에 Gillespie 알고리즘을 이용하여 모형 추정을 위한 우도함수를 구축하였다. 제한적인 자료구조 하에서 베이지안 접근법에 기반하여 MCMC (Markov chain Monte Carlo)방법에 기반한 모수의 추정 방법을 제안하였다. 제안된 방법들은 생태계 포식자-피식자 관계를 설명하기 위한 Lotka-Volterra 모형과 유전자 전사 (gene transcription) 과정을 설명하기 위한 L1 retrotransposition 모형에 적용하였다. 그 결과 우수한 추정 결과를 보였다.

Keywords

References

  1. Andersson, H. and Britton, T. (2000). Stochastic epidemic models and their statistical analysis, Springer, New York.
  2. Boys, R. J., Wilkinson, D. J. and Kirkwood, T. B. L. (2008). Bayesian inference for a discretely observed stochastic kinetic model. Statistics and Computing, 18, 125-135. https://doi.org/10.1007/s11222-007-9043-x
  3. Choi, B. and Rempala, G. A. (2012). Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling. Biostatistics, 13, 153-165. https://doi.org/10.1093/biostatistics/kxr019
  4. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
  5. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340-2361. https://doi.org/10.1021/j100540a008
  6. Hobolth, A. and Stone, E. A. (2009). Simulation from endpoint-conditioned, continuous-time Markov chains on a finite state space, with applications to molecular evolution. Annals of Applied Statistics, 3, 1204-1230. https://doi.org/10.1214/09-AOAS247
  7. Hwang, N. A., Jeong, B. Y., Lim, Y. C. and Park, J. S. (2007). Diseases data analysis using SIR nonlinear regression model. Journal of the Korean Data Analysis Society, 9, 49-59.
  8. Johnson, N. L. and Kotz, S. (1969). Discrete distribution. In: Distributions in Statistics, Vol. 1, Wiley, New York.
  9. Kermack, W. O. and McKendrkck, A. G. (1991). Contributions to the mathematical theory of epidemic-I (Reprint from the 1927 original). Bulletin of Mathematical Biology, 53, 33-55.
  10. Kim, K. (2010). An analysis on the competition patterns between Paper-book and E-book using the Lotka-Volterra model. Journal of the Korea Academia-Industrial cooperation Society, 11, 4766-4773. https://doi.org/10.5762/KAIS.2010.11.12.4766
  11. Lee, S. J., Lee, D. J. and Oh, H. (2003). A dynamic analysis on the competition relationships in Korean stock market using Lotka-Volterra model. Journal of Korean Institute of Industrial engineers, 29, 14-20.
  12. Lee, S. J., Oh, H. and Lee, D. J. (2002). An analysis on the competition between KOSPI and KOSDAQ using the Lotka-Volterra model. Proceedings of Korean Institute of Industrial engineers, 1052-1058.
  13. Liechty, J. C. and Roberts, G. O. (2001). Markov chain Monte Carlo methods for switching diffusion models. Biometrika, 88, 299-315. https://doi.org/10.1093/biomet/88.2.299
  14. Rempala, G. A., Ramos, K. S. and Kalbfleishe, T. (2006). A stochastic model of gene transcription: An application L1 retrotransposition events. Journal of Theoretical Biology, 242, 101-116. https://doi.org/10.1016/j.jtbi.2006.02.010
  15. Rodrigue, N., Philippe, H. and Lartillot, N. (2008). Uniformization for sampling realizations of Markov processes: Applications to Bayesian implementations of codon substitution models. Bioinformatics, 24, 56-67. https://doi.org/10.1093/bioinformatics/btm532
  16. Ryu, S. R. and Choi, B. (2015). Development of epidemic model using the stochastic method. Journal of the Korean Data & Information Science Society, 26, 301-302. https://doi.org/10.7465/jkdi.2015.26.2.301
  17. Seo, M. O. and Choi, B. (2015). An estimation method for stochastic epidemic model. Journal of the Korean Data Analysis Society, Submitted.
  18. Shephard, N. and Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653-667. https://doi.org/10.1093/biomet/84.3.653
  19. Wilkinson, D. J. (2012). Stochastic modelling for systems Biology, 2nd Eds., CRC Press, Boca Raton.

Cited by

  1. SEIR 모형을 이용한 전염병 모형 예측 연구 vol.28, pp.2, 2015, https://doi.org/10.7465/jkdi.2017.28.2.297