DOI QR코드

DOI QR Code

Parameteric Assessment of Water Use Vulnerability of South Korea using SWAT model and TOPSIS

SWAT 모형과 TOPSIS 기법을 이용한 우리나라 물이용 취약성 평가

  • Won, Kwyang Jai (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Sung, Jang Hyun (Ministry of Land, Infrastructure and Transport, Geum River Flood Control Office) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 원광재 (서울과학기술대학교 건설기술연구소) ;
  • 성장현 (국토교통부 금강홍수통제소 예보통제과) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인공학과)
  • Received : 2015.06.04
  • Accepted : 2015.07.06
  • Published : 2015.08.31

Abstract

This study assessed the water use vulnerability for 12 basins of South Korea. The annual runoff of 12 basins are derived using a Soil and Water Assessment Tool (SWAT) and the calculated runoff per unit area and population are compared with each basin. The 18 indicators are selected in order to assess the vulnerability. Those are classified by aspects of demand, loss and supply of water use. Their weighting values used Entropy method to determine objective weights. To quantitatively assess the water use vulnerability, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) based on multi-criteria decision making are applied. The results show that the water availability vulnerability of Hyeongsan River has the highest value followed by Sapgyo River; Dongjin River; Seomjin River; Anseong River; Mangyung River; Nakdong River; Tamjin River; Youngsan River, Geum River; Taehwa River; and Han River. The result of this study has a capability to provide references for the index deveopment of climate change vulnerability assessment.

본 연구는 국내 12개수계인 한강, 안성천, 금강, 삽교천, 영산강, 섬진강, 탐진강, 만경강, 동진강, 낙동강, 태화강, 형산강 유역에 대한 물이용 취약성 평가를 실시하였다. SWAT(Soil and Water Assessment Tool) 모형을 이용하여 국내 12개 수계의 연유출량을 도출하였고, 각 유역별 면적 및 인구당 유출량을 비교하였다. 취약성 평가를 위해 18개 지표로 구성하였고, 물이용의 수요, 손실 및 공급의 측면으로 구분하였다. 이때의 가중치는 객관적 가중치의 적용을 위해 엔트로피(Entropy)방법을 사용하였고 정량적인 물이용 취약성 평가를 위해 다기준 의사결정기법 중 하나인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) 기법을 적용하였다. 그 결과, 형산강의 물이용이 가장 취약하였고, 삽교천, 동진강, 섬진강, 안성천, 만경강, 낙동강, 탐진강, 영산강, 금강, 태화강, 한강 순이었다. 본 연구 결과는 향후 기후변화 취약성 평가를 위한 지표 개발에 이용할 수 있겠다.

Keywords

References

  1. Abbaspour, K.C. (2007). "User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs." Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland.
  2. Baeck, S.H., and Choi, S.J. (2013). "Evaluation of basinspecific water use through development of water use assessment index." Journal of Wetlands Research, Vol. 15, No. 3, pp. 367-380. https://doi.org/10.17663/JWR.2013.15.3.367
  3. Beven, K. (1989). "Changing ideas in hydrology-the case of physically-based models." J. Hydrol., Vol. 105, pp. 157-172. https://doi.org/10.1016/0022-1694(89)90101-7
  4. Beven, K. (2002). "Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system." Hydrol. Process., Vol. 16, pp. 189-206. https://doi.org/10.1002/hyp.343
  5. Calow, R.C., MacDonald, A.M., Nicol, A.L., Robins, N.S., and Kebede, S. (2002). The struggle for water: drought, water security and rural livelihoods. Groundwater Systems and Water Quality Programme Commissioned Report CR/02/226N. British Geological Survey Technical Report. Wallingford, UK: BGS.
  6. Choi, H.I., Park, S.Y., Song, J.H., and Park, M.J. (2013). "Identification of flood risk areas using a multicriteria decision making method." Journal of KOSHAM, Vol. 13, No. 2, pp. 237-243.
  7. Choi, H.S. (2013). "Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 2, pp. 529-536. https://doi.org/10.12652/Ksce.2013.33.2.529
  8. Chung, E.-S., Won, K.J., Kim, Y.J., and Lee, H.S. (2014). "Water resources vulnerability characteristics by district's population size in a changing climate using subjective and objective weights." Sustainability, Vol. 6, pp. 6141-6157. https://doi.org/10.3390/su6096141
  9. Falkenmark, M. (2003). "Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges." Philos. T. Roy. Soc. Lond., Vol. 358, pp. 2037-2049. https://doi.org/10.1098/rstb.2003.1386
  10. Ghaffari, G., Keesstra, S., Ghodousi, J., and Ahmadi, H. (2010). "SWAT-simulated hydrological impact of landuse change in the Zanjanrood basin, northwest Iran." Hydrol. Proc., Vol. 24, No. 7, pp. 892-903. https://doi.org/10.1002/hyp.7530
  11. Hwang, C.L., and Yoon, K. (1981). "Multiple Attributes Decision Making Methods and Applications." Springer: Heidelberg, Germany.
  12. IPCC (2007). "Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change." In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge.
  13. Kim, Y.J. (2014). "Development and application of sustainable water use indicators." Korea Environment Institute Press, Seoul and Korea
  14. Kim, Y.J., and Chung, E.-S. (2013). "Assessing climate change vulnerability with group multi-criteria decision making approaches." Climate Change, Vol. 121, pp. 301-315. https://doi.org/10.1007/s10584-013-0879-0
  15. Lee, J.H., Jun, H.D., Park, M.J., and Jung, J.H. (2011). "Flash flodd risk assessment using PROMETHEE and Entropy method." J. KOHAM, Vol. 11, No. 3, pp. 151-156.
  16. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  17. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models. Part I. a discussion of principles." J. Hydrol., Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  18. Oki, T., and Kanae, S. (2006). "Global hydrological cycles and world water resources." Science, Vol. 5790, pp. 1068-1072.
  19. Shannon, C.E., and Weaver, W. (1949). "The Mathematical Theory of Communication." University of Illinois Press, London and New York
  20. Sorooshian, S., and Gupta, V. (1995). "Chapter 2: Model calibration." Computer Models of Watershed Hydrology, Singh VP, Publications, LLC, Highlands Ranch, CO, pp. 23-68.
  21. Sullivan, C.A. (2001). "The potential for caculating a maeaningful water poverty index." Water International, Vol. 26, No. 4, pp. 471-480. https://doi.org/10.1080/02508060108686948
  22. Vorosmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P.A., Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C., and Davies, P.M. (2010). "Global threats to human water security and river biodiversity." Nature, 467, pp. 555-561. https://doi.org/10.1038/nature09440
  23. WAMIS: http://www.wamis.go.kr
  24. Won, K.J, Chung, E.-S, Kim, Y.J., and Hong, I.P. (2014). "Assessment of water resources vulnerability index by nation." Journal of KWRA, Vol. 47, No. 2, pp. 183-194.

Cited by

  1. Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.685