DOI QR코드

DOI QR Code

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation

파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계

  • Kim, Kyong-Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Lee, Kangsu (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Sohn, Jung Min (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Park, Sewan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Choi, Jong-Su (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 김경환 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 이강수 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 손정민 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 박세완 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 최종수 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 홍기용 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부)
  • Received : 2015.07.13
  • Accepted : 2015.08.07
  • Published : 2015.08.25

Abstract

The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

본 연구에서는 부유식 파력-해상풍력 연계형 발전시스템의 기반구조물 개념설계에 대한 내용을 다루고 있다. 세계적으로 해양 신재생에너지에 대한 관심이 커져가고 있다. 파력과 해상풍력은 다른 해양에너지원과 더불어 주요 관심이 되는 에너지원으로서 발전적지가 대체로 일치한다는 특징이 있다. 따라서 파력과 해상풍력을 복합하여 발전하는 시스템은 경제적으로 많은 이점이 있고 이미 여러 나라에서 파력-해상풍력 복합발전 시스템을 개발하고 있다. 이에 따라 우리나라에서도 10MW급의 파력-해상풍력 복합발전 시스템을 개발하기 위한 연구가 수행되었다. 본 연구에서는 다수 풍력발전기와 파력발전기의 배치를 고려하여 반잠수식 구조물이 설계되었다. 또한 설치해역의 환경을 고려하여 계류시스템과 파워케이블이 설계되었다. 본 논문에서는 이러한 복합발전 플랫폼의 개념설계 결과를 제시하고 다양한 발전시스템의 배치를 고려한 설계상의 어려움을 토의하고 설계 방법을 제시한다.

Keywords

References

  1. ABS, 2013, Guide for Floating Offshore Wind Turbine Installations, American Bureau of Shipping.
  2. ABS FPI Guide, 2013, Guide for Building and Classing Floating Production Installations, American Bureau of Shipping.
  3. API RP 2RD, 1998, Recommended Practice for Design of Risers for Floating Production Systems and TLPs, American Petroleum Institute.
  4. API RP 2SK, 2005, Recommended Practice for Design and Analysis Stationkeeping Systems for Floating Structures, 2nd Edition, American Petroleum Institute.
  5. API SPEC 17E, 2003, Specification for Subsea Umbilicals, American Petroleum Institute.
  6. Bae, Y.H. and Kim, M.H., 2014, "Coupled Dynamic Analysis of Multiple Wind Turbines on a Large Single Floater", Ocean Engineering, Vol. 92, pp. 175-187. https://doi.org/10.1016/j.oceaneng.2014.10.001
  7. Cermelli, C., Roddier, D., Aubault, A., 2009, "WindFloat : A floating foundation for offshore wind turbines Part II: hydrodynamics analysis", Proc. of the ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic Eng., May 31 - June 5, Hawaii, USA.
  8. Cho, I.H. and Choi, J.Y., 2014, "Design of wave energy extractor with a linear electric generator Part II. Linear generator", J. Korean Society for Marine Environment and Energy, Vol. 17, No. 3, pp. 174-181. https://doi.org/10.7846/JKOSMEE.2014.17.3.174
  9. ISO 13628-5, 2009, Petroleum Natural Gas Industries - Design and Operation of Subsea Petroleum Production Systems - Part 5: Subsea Umbilicals, International Organization for Standardization.
  10. Karegar, S., 2013, Flexible Riser Global Analysis for Very Shallow Water, Master Thesis, University of Stavanger.
  11. Kim, J.R., Bae, Y.H. and Cho, I.H., 2014, "Design of wave energy extractor with a linear electric generator Part I. design of a wave power buoy", J. Korean Society for Marine Environment and Energy, Vol. 17, No. 2, pp. 146-152. https://doi.org/10.7846/JKOSMEE.2014.17.2.146
  12. KIOST, 2005, Estimation of Deepwater Design Wave Height on Korean Sea(전해역 심해설계파 추정보고서 II), Korea Institute of Ocean Science Technology(KIOST), Ministry of Oceans and Fisheries, Korea.
  13. Park, S.W., Kim, K.H., Lee, K.S., Park, Y.S., Oh, H., Shin, H. and Hong, K., 2015, "Arrangement design and performance evaluation for multiple wind turbines of 10 MW class floating wave-offshore wind hybrid power generation system", Journal of the Korean Society for Marine Environment and Energy, Vol. 18, No. 2, pp. 123-132. https://doi.org/10.7846/JKOSMEE.2015.18.2.123
  14. Roddier, D., Cermelli, C. and Weinstein, A., 2009, "WindFloat: a floating foundation for offshore wind turbines Part I: Design basis and qualification process", Proc. of the ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic Eng., May 31 - June 5, Hawaii, USA.
  15. U.S. Army Corps of Engineers, 2002, Coastal Engineering Manual.
  16. WindFloat, 2015, "WindFloat", http://www.principlepowerinc.com/products/windfloat.html (accessed July, 06, 2015).
  17. WindSea, 2015, "About WindSea", http://www.windsea.no/sfiles/07/1/file/windsea.pdf (accessed July, 06, 2015).

Cited by

  1. Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System vol.19, pp.3, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.3.194
  2. Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System vol.65, pp.5, 2016, https://doi.org/10.5370/KIEE.2016.65.5.811