DOI QR코드

DOI QR Code

Effects of Elevated Spring Temperatures on the Growth and Fruit Quality of the Mandarin Hybrid 'Shiranuhi'

봄철 가온처리가 부지화의 생장과 과실품질에 미치는 영향

  • Moon, Young-Eel (Citrus Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kang, Seok-Beom (Citrus Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Han, Seung-Gab (Citrus Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kim, Yong-Ho (Citrus Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Choi, Young-Hun (Citrus Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology and Research Institute for Natural Sciences, Jeju National University) ;
  • Oh, Soonja (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science)
  • 문영일 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 강석범 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 한승갑 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 김용호 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 최영훈 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 고석찬 (제주대학교 생물학과.기초과학연구소) ;
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2014.11.11
  • Accepted : 2015.04.01
  • Published : 2015.08.31

Abstract

The effects of elevated spring temperatures on the growth and fruit quality of the mandarin hybrid 'Shiranuhi' [(Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata] were investigated in plastic greenhouses, to develop a cropping system to improve the quality of the fruit and increase the income of growers on Jeju Island, South Korea. Under conditions of elevated temperature I ($25/15^{\circ}C$, day/night) and elevated temperature II ($28/18^{\circ}C$, day/night) during early spring, budburst was advanced by 11 and 15 d, and full bloom by 22 and 45 d, respectively, compared to those of the plants grown at ambient air temperature in a plastic greenhouse. Elevated temperatures decreased the number of spring shoots but increased mean spring shoot length and leaf area. Growing 'Shiranuhi' trees at elevated temperatures resulted in increases in mean fruit weight and fruit L/D ratio (> 1.0). In addition, fruit color development was significantly advanced in trees grown under elevated temperatures during early spring, which allowed the fruit to be harvested 1-2 months earlier than trees grown under ambient air temperature. Fruit soluble solids content (SSC) and titratable acidity (TA) at harvest were similar between elevated temperature I and ambient air temperature, but were significantly higher than at elevated temperature II. Considering fruit quality, harvest time, and yield, the elevated temperature treatment regime of $25/15^{\circ}C$ (day/night) during early spring could be useful for cultivation of the mandarin hybrid 'Shiranuhi' to increase the income of growers.

본 연구에서는 제주지역에서 재배되고 있는 부지화[不知火, Shiranuhi, (Citrus unshiu ${\times}$ C. sinensis) ${\times}$ C. reticulata)]의 과실품질 향상을 위한 재배체계를 확립하고 부지화 재배농가의 소득 증대를 위하여 봄철 눈의 발아 및 개화 시기의 가온처리가 부지화의 생장 및 과실 품질에 미치는 영향을 살펴보았다. 이른 봄철에 가온처리I($25/15^{\circ}C$, 주간/야간) 또는 가온처리II($28/18^{\circ}C$, 주간/야간) 조건에서 2월 중순부터 5월 말까지 100일 동안 재배하였을 때 대조구인 무가온 시설재배에 비하여 눈의 발아가 각각 11일, 15일 정도, 만개시기는 각각 22일, 45일 정도 앞당겨졌다. 구엽당 발생하는 봄순의 수는 가온처리구에서 감소하지만 봄순의 평균 길이와 엽면적은 증가하였다. 평균 과중 또한 봄철 가온처리에 의해 더 증가하였으며 과형지수는 측정시기에 관계없이 가온처리구에서 1.0 이상을 나타내었다. 그리고 봄철 가온처리 시에는 과피가 일찍 착색되어 수확시기를 1-2개월 앞당길 수 있을 것으로 보였다. 수확기의 가용성고형물 함량은 대조구와 가온처리I에서 각각 13.9와 $13.6^{\circ}Brix$ 정도로 가온처리II에서 보다 더 높았다. 그리고 산 함량은 가온처리II에서 가장 낮았으나 유의성이 없었고, 당산비는 처리간 유의성이 관찰되지 않았다. 따라서 부지화 과실의 조기 수확 및 수확량 증대, 크기가 크고 당도가 높은 고품질 과실의 생산 등을 위해 봄철 생육기의 온도를 $25/15^{\circ}C$(주간/야간) 조건으로 재배하는 것이 적절한 것으로 보인다.

Keywords

References

  1. BOK (Bank of Korea). 2003. Citrus Industry Status and Investigation of the Actual Condition of the Citrus Families. Bank of Korea Jeju Branch, Jeju, Korea.
  2. Brown, D.S. 1953. Climate in relation to deciduous fruit production in California. VI. The apparent efficiencies of different temperatures for the development of apricot fruit. Proc. Am. Soc. Hortic. Sci. 62:173-183.
  3. CMSA (Citrus Marketing and Shipping Association). 2012. Citrus marketing and shipping analysis harvested in 2012. Citrus Marketing and Shipping Association, Jeju, Korea.
  4. Davies, F.S. and L.G. Albrigo. 1994. Environmental constraints on growth, development and physiology of citrus, p.52-82. In: Crop Production Science in Horticulture 2 - Citrus. CAB International, Wallingford, UK.
  5. Fishler, M., E.E. Goldschmidt, and S.P. Monselise. 1983. Leaf area and fruit size on girdled grapefruit branches. J. Am. Soc. Hortic. Sci. 108:218-221.
  6. Ge, Z.M., X. Zhou, S. Kellomäki, K.Y. Wang, H. Peltola, and P.J. Martikainen. 2011. Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass (Phalaris arundinacea L.) to elevated temperature and $CO_2$ under varying water regimes. Photosynthetica 49: 172-184. https://doi.org/10.1007/s11099-011-0029-8
  7. Ge, Z.M., X. Zhou, S. Kellomäki, C. Zhang, H. Peltola, P.J. Martikainen, and K.Y. Wang. 2012. Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, $CO_2$, and soil water regimes. Photosynthetica 50:141-151. https://doi.org/10.1007/s11099-012-0014-x
  8. Guo, Y.P., S.S. Hong, L.C. Zhang, and Y.G. Shen. 2000. Responses of gas exchange and chlorophyll fluorescence to different low temperature in Satsuma mandarin (Citrus unshiu Marc.). Acta Phytophys. Sin. 26:88-94.
  9. Han, S.H. and J.H. Kang. 2011. Effect of water states of fruit vesicle and leaf on fruit quality in 'Trifoliate' orange and 'Swingle citrumelo' rootstock of 'Shiranuhi' [$(Citrus unshin\;{\times}\;C. sinensis)\;{\times}C$. reticulata] mandarin hybrid, M16 A line in plastic film house cultivation. J. Bio-Environ. Cont. 20:204-210.
  10. Inoue, H. 1990a. Effects of temperature on bud dormancy and flower bud differentiation in satsuma mandarin. J. Jpn. Soc. Hortic. Sci. 58:919-926. https://doi.org/10.2503/jjshs.58.919
  11. Inoue, H. 1990b. Effects of exposing satsuma mandarin trees grown under low temperature regimes in winter and early spring on flower bud development and flowering. J. Jpn. Soc. Hortic. Sci. 59:215-223. https://doi.org/10.2503/jjshs.59.215
  12. Inoue, H. and Y. Harada. 1988. Tree growth and nutrient absorption of young satsuma mandarins under different temperature conditions. J. Jpn. Soc. Hortic. Sci. 57:1-7. https://doi.org/10.2503/jjshs.57.1
  13. Iwasaki, N. and C. Oogaki. 1985. Photosynthetic characteristics of some citrus species under various temperatures and light conditions. J. Jpn. Soc. Hortic. Sci. 54:315-322. https://doi.org/10.2503/jjshs.54.315
  14. JCGAC (Jeju Citrus Growers Agricultural Cooperative). 2000. Principal Citrus Variety in Jeju. Jeju Citrus Growers' Agricultural Cooperative, Jeju, Korea.
  15. JRMO (Jeju Regional Meteorological Office). 2012. Meteorological Compendium in 2012. Jeju Regional Meteorological Office, Jeju, Korea.
  16. Kawase, K. 1999. Cultivation of Dekopon. Rural Cult. Assn., Tokyo, Japan.
  17. Kitazono, K. 2001. A higher value-added technical development for sustainable production and improvement of fruit quality of 'Shiranuhi'. Kyushu Agr. Res. 63:17-20.
  18. Lee, S.H., H.S. Kim, S.W. Cho, J.S. Lee, and J.S. Koh. 2006. Quality properties of Hallabong tangor ($Citrus kiyomi\;{\times}\;ponkan$) cultivated with heating. Kor. J. Food Preserv. 13:538-542.
  19. Lindsey, A.A. and J.E. Netman. 1956. Use of official weather data in spring time temperature analysis of an Indiana phenological record. Ecology 37:812-823. https://doi.org/10.2307/1933072
  20. Matsumoto, K., S. Chikaizumi, I.O. Hoe, and J. Watanabe. 1972. Studies on the contribution of environmental and internal factors affecting the edible quality and exterior appearance of satsuma mandarin fruits. I. Estimation of the contribution of some factors influencing the total soluble solids and free acid content of juice. J. Jpn. Soc. Hortic. Sci. 41:171-178. https://doi.org/10.2503/jjshs.41.171
  21. Matsumoto, R. 2001. 'Shiranuhi', a late-maturing citrus cultivar. Bull. Natl. Inst. Fruit Tree Sci. 35:115-120.
  22. Morioka, S. 1988. Influence of fruit load and fruit thinning on fruit growth, fruit characters, shoot growth and flower bud formation in the following season in mature Satsuma mandarin trees. J. Jpn. Soc. Hortic. Sci. 57:351-359. https://doi.org/10.2503/jjshs.57.351
  23. Moon, D.G., S.W. Ko, S.G. Han, Y.H. Choi, and Y.H. Kim. 2008. Sugar and acid contents in different portions of 'Shiranuhi' mandarin fruit as affected by water stress. J. Kor. Soc. Hort. Sci. 49:216-220.
  24. Moon, Y.E. and C.M. Kim. 2001. Studies on investigation of factor and preventing of fruit splitting in satsuma mandarin in plastic film house. Bull. Jeju Agr. Exp. Stn. p. 162-175.
  25. Moon, Y.E., C.M. Kim, K.S. Kim, S.H. Yun, J.H. Park, H.J. An, D.H. Lee, and D.K. Moon. 2010. Effect of rootstock on the tree growth and fruit quality of 'Shiranuhi' mandarin hybrid in plastic film house. Kor. J. Hort. Sci. Technol. 28:65-69.
  26. Nii, N., K. Harada, and K. Kadowaki. 1970. Effects of temperature on the fruit growth and quality of satsuma oranges. J. Jpn. Soc. Hortic. Sci. 39:19-27.
  27. Oh, S., K.H. Moon, I.C. Son, E.Y. Song, and S.C. Koh. 2015. Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Hort. Environ. Biotechnol. 56:159-166. https://doi.org/10.1007/s13580-015-0122-1
  28. Okada, N. 1985. The effect of temperature conditions during bud stage on the nitrogen uptake for navel orange (C. sinensis Osb.). Bull. Shizuoka Citrus Exp. Stn. 21:49-51.
  29. Ono, S. and H. Daito. 1982. Studies on photosynthesis and productive structure of satsuma mandarins (Citrus unshiu Marc.) - 4. Difference by area in intra-canopic photosynthetic action and development of fruits. Bull. Shikoku Agr. Exp. Stn. 40:59-77.
  30. Poerwanto, R. and H. Inoue. 1990. Effects of air and soil temperatures in autumn on flower induction and some physiological responses of satsuma mandarin. J. Jpn. Soc. Hortic. Sci. 59: 207-214. https://doi.org/10.2503/jjshs.59.207
  31. Reuther, W., E.M. Nauer, and L. Summers. 1973. Effects of seasonal temperature regimes on development and maturation of citrus fruits. Proc. Int. Soc. Citric. 3:63-71.
  32. Song, H.S., Y.H. Park, and D.K. Moon. 2005. Volatile flavor properties of Hallabong grown in open field and green house by GC/GC-MS and sensory evaluation. J. Kor. Soc. Food Sci. Nutr. 34:1239-1245. https://doi.org/10.3746/jkfn.2005.34.8.1239
  33. Stover, E. 2000. Relationship of flowering intensity and cropping in fruit species. HortTechnology 10:729-732.
  34. Sun, Z. and X. Ma. 1999. Thermo stability of plasma membrane in citrus leaves. J. Huangzhong Agric. Univ. 18:375-377.
  35. Susanto, S. and Y. Nakajima. 1990. Effects of winter heating on flowering time, fruiting and fruit development in pummelo grown under plastic house. J. Jpn. Soc. Hortic. Sci. 59:245-253. https://doi.org/10.2503/jjshs.59.245
  36. Takagi, T., I. Sawano, T. Suzuki, and S. Okamoto. 1982. Effects of temperature before and after flowering on the development of flower and fruit in Citrus unshiu Marc. J. Jpn. Soc. Hortic. Sci. 51:257-262. https://doi.org/10.2503/jjshs.51.257
  37. Vu, J.C.V. and G. Yelenosky. 1987. Photosynthetic characteristics in leaves of 'Valencia' orange (Citrus sinensis (L.) Osbeck) grown under high and low temperature regimes. Environ. Exp. Bot. 27:279-287. https://doi.org/10.1016/0098-8472(87)90037-2
  38. Yamanishi, O.K. 1994. Effect of spring day/night temperature on flower development, fruit set and fruit quality on strangulated pummelo trees. J. Jpn. Soc. Hortic. Sci. 63:493-504. https://doi.org/10.2503/jjshs.63.493
  39. Zhou, X., Z.M. Ge, S. Kellomäki, K.Y. Wang, H. Peltola, and P.J. Martikainen. 2011. Effects of elevated $CO_2$ and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. Global Change Biol. Bioenerg. 3:223-234. https://doi.org/10.1111/j.1757-1707.2010.01075.x

Cited by

  1. RCP 8.5 기후변화시나리오에 근거한 온주밀감과 '부지화'의 잠재적 재배지 변화 예측 vol.19, pp.4, 2015, https://doi.org/10.5532/kjafm.2017.19.4.215
  2. Influence of Excessively High Temperatures on the Fruit Growth and Physicochemical Properties of Shiranuhi Mandarin in Plastic-Film Greenhouse Cultivation vol.10, pp.8, 2015, https://doi.org/10.3390/plants10081525