DOI QR코드

DOI QR Code

Antioxidant Activities and Antimicrobial Effects of Solvent Extracts from Lentinus edodes

표고버섯(Lentinus edodes) 용매 추출물의 항산화 활성 및 항균 효과

  • Han, So-Ra (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Kim, Mi-Jin (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, SunMoon University)
  • 한소라 (선문대학교 제약공학과) ;
  • 김미진 (선문대학교 제약공학과) ;
  • 오태진 (선문대학교 제약공학과)
  • Received : 2015.04.22
  • Accepted : 2015.07.02
  • Published : 2015.08.31

Abstract

The aim of this study was to investigate the antioxidant and antimicrobial activities of various solvent (acetone, ethyl acetate, and ethanol) extracts from Lentinus edodes. The antioxidant activities were evaluated by measuring total polyphenol and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Total polyphenol content and ABTS radical scavenging activity were highest in ethanol extract. ABTS radical scavenging activity of ethanol extract showed the highest value (98.5%), which was similar to that of ascorbic acid (95.7%). The ethyl acetate extract from Lentinus edodes showed relatively high total flavonoid content and DPPH radical scavenging activity. Negative correlations were found between total polyphenol contents and DPPH radical scavenging activities in Lentinus edodes extracts. Antimicrobial activities of the extracts were determined against Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae by the disc diffusion method. The acetone and ethanol extracts showed moderate antimicrobial activities against almost all tested microorganisms except E. coli and S. aureus, respectively. The ethyl acetate extract showed a significant growth inhibition effect against E. coli, Ent. cloacae, and B. subtilis.

식용 표고버섯을 acetone, ethyl acetate 및 ethanol 등 여러 용매로 추출하여 각 추출용매에 따른 표고버섯 추출물의 항산화 및 항균 활성을 측정하였다. 추출물은 최소 농도인 98 mg/mL에 맞추어 모든 실험을 진행하였다. 표고버섯의 폴리페놀 함량은 유의적 차이는 보이지 않았으나 극성이 큰 ethanol 추출물이 acetone 추출물과 ethyl acetate 추출물보다 다소 높게 조사되었으며, ABTS 라디칼 소거능에서도 유사한 경향을 확인하였다. 반면에 플라보노이드 함량과 DPPH 라디칼 소거능은 ethyl acetate와 acetone 추출물이 ethanol 추출물보다 다소 높게 조사되었다. 폴리페놀과 플라보노이드 함량은 낮았지만 DPPH 라디칼 소거능에서 항산화 활성을 확인할 수 있었으며, 특히 ABTS 라디칼 소거능은 86.8~98.5%로 표준물질 항산화제인 ascorbic acid보다 좀 더 높은 항산화 활성을 확인하였다. 표고버섯의 다재 내성 관련 항균 활성은 ethyl acetate 추출물이 6종의 다제 내성 균주인 3종의 그람 양성균 Bacillus subtilis, Staphylococcus aureus 및 Micrococcus luteus와 3종의 그람 음성균 Escherichia coli, Pseudomonas aeruginosa 및 Enterobacter cloacae 등 모두에서 항균 활성을 가지고 있는 것을 확인하였다. 특히 B. subtilis에 대하여 가장 높은 항균활성을 보였으며, P. aeruginosa, M. luteus, Ent. cloacae 및 B. subtilis에서는 acetone, ethyl acetate 및 ethanol 추출물 모두에서 항균 활성을 확인할 수 있었다.

Keywords

References

  1. Choi OK, Kim Y, Cho GS, Sung CK. 2002. Screening for antimicrobial activity from Korean plants. Korean J Food & Nutr 15: 300-306.
  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  3. Yim SB, Kim MO, Koo SJ. 1991. Determination of dietary fiber contents in mushrooms. Korean J Soc Food Sci 7:69-76.
  4. Chaovanalikit A, Wrolstad RE. 2004. Total anthocyannins and total phenolics of fresh and processed cherries and their antioxidant properties. J Food Sci 69: 67-72.
  5. Park MH, Oh KY, Lee BW. 1998. Anti-cancer activity of Lentinus edodes and Pleurotus astreatus. Korean J Food Sci Technol 30: 702-708.
  6. Lee IS, Chae HJ, Moon H. 2008. Inhibitory effect of aqueous extracts from the fruit body of Lentinus edodes on rat intestinal mucosa ${\alpha}$-glucosidase activity and reducing the increase of blood glucose after Streptozotocin-induced diabetic rats. J Exp Biomed Sci 14: 63-68.
  7. Mizuno T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushrooms 1: 9-29. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
  8. Enman J, Rova U, Berglund KA. 2007. Quantification of the bioactive compound eritadenine in selected strains of shiitake mushroom (Lentinus edodes). J Agric Food Chem 55:1177-1180. https://doi.org/10.1021/jf062559+
  9. Hatvani N. 2001. Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. Int J Antimicrob Agents 17: 71-74. https://doi.org/10.1016/S0924-8579(00)00311-3
  10. Kim H, You J, Jo Y, Lee Y, Park I, Park J, Jung MA, Kim YS, Kim S. 2013. Inhibitory effects of Lentinus edodes and rice with Lentinus edodes mycelium on diabetes and obesity. J Korean Soc Food Sci Nutr 42: 175-181. https://doi.org/10.3746/jkfn.2013.42.2.175
  11. Lee GD, Chang HG, Kim HK. 1997. Antioxidative and nitrite-scavenging activities of edible mushroom. Korean J Food Sci Technol 29: 432-436.
  12. Kim CH, Jeong JG. 2009. Antioxidant activities and the effect of reducing serum alcohol concentration of Lentinus edodes. Kor J Herbology 24: 159-164.
  13. Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655
  14. Kim MJ, Chu WM, Park EJ. 2012. Antioxidant and antigenotoxic effects of shiitake mushrooms affected by different drying methods. J Korean Soc Food Sci Nur 41: 1041-1048. https://doi.org/10.3746/jkfn.2012.41.8.1041
  15. Kim YD, Kim KJ, Cho DB. 2003. Antimicrobial activity of Lentinus edodes extract. Korean J Food Preserv 10: 89-93.
  16. Folin O, Denis W. 1915. A colorimetric method for determination of phenols (and phenol derivatives) in urine. J Biol Chem 22: 305-308.
  17. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Piddock LJ. 1990. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J Appl Bacteriol 68: 307-318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
  20. Di Carlo G, Mascolo N, Izzo AA, Capasso F. 1999. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65: 337-353. https://doi.org/10.1016/S0024-3205(99)00120-4
  21. Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E. 1997. Why drinking green tea could prevent cancer. Nature 387: 561. https://doi.org/10.1038/42381
  22. Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  23. Ferreira IC, Barros L, Abreu RM. 2009. Antioxidants in wild mushrooms. Curr Med Chem 16: 1543-1560. https://doi.org/10.2174/092986709787909587
  24. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632.
  25. Que F, Mao L, Zhu C, Xie G. 2006. Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT -Food Sci Technol 39: 111-117. https://doi.org/10.1016/j.lwt.2005.01.001
  26. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  27. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science 163: 1161-1168. https://doi.org/10.1016/S0168-9452(02)00332-1
  28. Gallardo C, Jeimenz L, Garcia-Conesa MT. 2006. Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chem 99: 455-463. https://doi.org/10.1016/j.foodchem.2005.07.053
  29. Vundac VB, Brantner AH, Plazibat M. 2007. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem 104: 1277-1281. https://doi.org/10.1016/j.foodchem.2007.01.036
  30. Hong MH, Jin YJ, Pyo YH. 2012. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J Korean Soc Food Sci Nutr 41: 1235-1241. https://doi.org/10.3746/jkfn.2012.41.9.1235
  31. Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856. https://doi.org/10.1021/jf030723c
  32. Jin SY. 2011. Study on antioxidant activities of extracts from different parts of Korean and Iranian pomegranates. J Korean Soc Food Sci Nutr 40: 1063-1072. https://doi.org/10.3746/jkfn.2011.40.8.1063
  33. Lee JS, Kim T, Lee YH, Jin CM, Kim HG, Kim WJ, Oh DC, Park YI. 2006. Antimicrobial activity of the Coriolus versicolor liquid culture extracts against antibiotic resistant bacteria and purification of active substance. Korean J Mycol 34: 92-97. https://doi.org/10.4489/KJM.2006.34.2.092
  34. Kim HJ, Ahn MS, Kim GH, Kang MH. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol 38: 799-804.
  35. Park JW, Kim T, Lim DJ, Lee HB, Joo YS, Park YI. 2004. Antibacterial activities of mushroom liquid culture extracts against livestock disease-causing bacteria and antibiotic resistant bacteria. Korean J Mycol 32: 145-147. https://doi.org/10.4489/KJM.2004.32.2.145

Cited by

  1. Antioxidant Activities and Antimicrobial Effects of Extracts from Auricularia auricula-judae vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.327
  2. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  3. Study on Sawdust Bag Cultivation of Shiitake (Lentinula edodes), using Oak Wilt-Diseased Logs 2016, https://doi.org/10.4489/KJM.2016.44.4.300
  4. 표고버섯 분말을 첨가한 쌀 쿠키의 품질 특성 및 항산화 활성 vol.24, pp.3, 2017, https://doi.org/10.11002/kjfp.2017.24.3.421
  5. LED 광원에 따른 표고 톱밥배지 갈변효율 및 자실체 특성 vol.15, pp.4, 2015, https://doi.org/10.14480/jm.2017.15.4.195
  6. 새송이버섯 추출물이 구강세균에 작용하는 항균효과 vol.18, pp.1, 2015, https://doi.org/10.13065/jksdh.2018.18.01.9
  7. 원목재배 표고버섯 물추출물의 항산화 특성 vol.46, pp.1, 2018, https://doi.org/10.4489/kjm.20180007
  8. 버섯 및 다시마 추출물과 갓의 첨가가 김치의 항산화 특성에 미치는 영향 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.471
  9. Evaluation of the Physiological Activity of Lentinula edodes Extract by Extrusion vol.30, pp.1, 2020, https://doi.org/10.17495/easdl.2020.2.30.1.35
  10. 액체종균에 의한 표고의 수확 주기에 따른 이화학적 특성 및 항산화 활성 vol.18, pp.3, 2015, https://doi.org/10.14480/jm.2020.18.3.234
  11. 버섯차 개발을 위한 로스팅 식용버섯류와 곡물첨가물의 혼합비율에 따른 추출온도 및 시간별 생리활성 및 영양성분 변화 vol.18, pp.4, 2015, https://doi.org/10.14480/jm.2020.18.4.344
  12. 국내산과 중국산 능이의 미네랄 함량 비교 vol.19, pp.1, 2015, https://doi.org/10.14480/jm.2021.19.1.51
  13. Comparison of mineral and hazardous heavy metal contents in Lentinula edodes produced from Korea and China vol.28, pp.5, 2015, https://doi.org/10.11002/kjfp.2021.28.5.699
  14. Transcriptome Analysis Identified Candidate Genes Involved in Fruit Body Development under Blue Light in Lentinula edodes vol.11, pp.15, 2015, https://doi.org/10.3390/app11156997