DOI QR코드

DOI QR Code

Sector-Based Device Discovery Scheme for D2D Communication in LTE-Advanced Networks

LTE-Advanced 네트워크에서 D2D 통신을 위한 섹터 기반 디바이스 디스커버리 기술

  • Received : 2015.06.01
  • Accepted : 2015.07.22
  • Published : 2015.08.31

Abstract

According to the service attributes, D2D communications establish 1-1, or 1-n channels and require the differentiated device discovery technology. This paper proposes a sector-based device discovery mechanism for 1-n D2D communication scenario in LTE-Advanced networks that a disaster happened. Our proposal is a mechanism that can extend the coverage in a disaster situation which a number of devices(survivors) need to be discovered in a short time. In the single cell environment, a larger discovery coverage can be obtained, and in the multi-cell, it is possible to mitigate the interference with adjacent links due to sector-based coverage control. Through a set of simulations, we have confirmed that our proposal has better performance in the number of devices discovered and the interference than the legacy broadcast device discover mechanism.

D2D 통신은 서비스의 속성에 따라 1:1 또는 1:N 통신을 형성하며 디스커버리 기술 또한 서비스의 속성에 따라 차별화되어야 한다. 본 논문에서는 재난이 발생한 LTE-Advanced 네트워크에서 1:N D2D 통신을 위한 섹터 기반의 D2D 디스커버리 기술을 제안한다. 섹터 기반의 디스커버리 기술은 빠른 시간 내에 다수의 단말(조난자)을 탐색해야 하는 재난 상황에서 커버리지를 확대할 수 있는 기술이다. 단일 셀 환경에서는 디스커버리 커버리지 확대 효과를 얻을 수 있으며, 다중 셀 환경에서는 섹터 기반의 커버리지 조절로 이웃한 링크와의 간섭 완화 효과를 얻을 수 있다. 성능 분석 결과 디스커버리 커버리지 확대로 다수 단말 탐색이 가능함은 물론 디스커버리 커버리지 조절로 간섭 완화 효과를 확인할 수 있었다.

Keywords

References

  1. K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTE-advanced networks," IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009. https://doi.org/10.1109/MCOM.2009.5350367
  2. H. N. Lee, H. M. Kim, and S. K. Kim, "Improvement of computational complexity of device-to-device(D2D) resource allocation algorithm in LTE-advanced networks," J. KICS, vol. 40, no. 4, pp. 762-768, Apr. 2015. https://doi.org/10.7840/kics.2015.40.4.762
  3. Y. J. Hwang, K. W. Sung, and S. L. Kim, "Feasibility of massive device-to-device communications in cellular networks," J. KICS, vol. 37A, no. 12, pp. 1091-1101, Dec. 2012.
  4. X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovicic, "FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks," in Proc. IEEE Allerton Conf., Monticello, USA, Sept. 2010.
  5. 3GPP TR 22.803, Developments in 3GPP-release 12 and beyond, May 2014.
  6. Alcatel-Lucent, L2 addresses for public safety D2D discovery and communication user data, R2-140723, 3GPP TSG-RAN WG2 Meeting #85, Feb. 2014.
  7. J. E. Korneluk, S. E. Dubin, S. A. Patel, A. Rodrigues, and J. T. Walsh, Switching a call from a network assisted communication mode to a direct communication mode, US Patent no. 7,164,930, Dec. 2004.
  8. Z. Li, L. Sun, and E. C. Ifeachor, "Rangebased mobility estimations in MANETs with application to link availability prediction," in Proc. IEEE ICC 2007, pp. 3376-3382, Glasgow, Scotland, Jun. 2007.
  9. P. Kumar, L. Reddy, and S. Varma, "Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks," in Proc. IEEE WCSN, pp. 1-4, Allahabad, India, Dec. 2009.
  10. R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, "Toward proximity-aware internetworking," IEEE Wirel. Commun., vol. 17, no. 6, pp. 26-33, Dec. 2010. https://doi.org/10.1109/MWC.2010.5675775
  11. K. Doppler, C. Ribeiro, and J. Kneckt, "Advanced in D2D communications: Energy efficient service and device discovery radio," IEEE Wirel. VITAE, pp. 1-6, Mar. 2011.
  12. G. Yeo, S. Chae, M. Rim, C. G. Kang, C. Yeh, and J. Ahn, "Discovery of proximate devices with partial information for deviceto-device communication systems," J. KICS, vol. 38B, no. 05, pp. 328-336, May 2013. https://doi.org/10.7840/kics.2013.38B.5.328
  13. K. Kim and J. Lee, "Antenna grouping technique for MIMO beamforming system," in Proc. 42nd IEEE Asilomar Conf. Signals, Syst., Comput., pp. 393-397, Pacific Grove, CA, Oct. 2013.
  14. E. Dahlman, S. Parkvall, and J. Skold, LTE/LTE-Advanced for mobile broadband, Elsevier Inc., pp. 83-87, 2011.
  15. M. Hata, "Empirical formula for propagation loss in land mobile radio services," IEEE Trans. Veh. Technol., vol. 29, no. 3, pp. 317-325, Aug. 1980. https://doi.org/10.1109/T-VT.1980.23859
  16. T. Camp, J. Boleng, and V. Davies, "A survey of mobility models for ad hoc network research," Wirel. Commun. & Mob. Comput. (WCMC), Special Issue: Mobile Ad hoc Networking - Research, Trends and Applications, vol. 2, no. 5, pp. 483-502, Aug. 2002. https://doi.org/10.1002/wcm.72

Cited by

  1. LTE D2D 디스커버리에서 무작위 자원 선택 방법에 대한 성능 분석 vol.42, pp.3, 2017, https://doi.org/10.7840/kics.2017.42.3.577
  2. D2D 셀룰러 네트워크에서 위치기반 자원할당 vol.42, pp.4, 2015, https://doi.org/10.7840/kics.2017.42.4.750
  3. V2X를 위한 향상된 랜덤 자원 선택 기술 vol.42, pp.5, 2017, https://doi.org/10.7840/kics.2017.42.5.1058