DOI QR코드

DOI QR Code

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact

구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성

  • Jang, Seok-Joon (Dept. of Architectural Engineering, Chungnam National University) ;
  • Son, Seok-Kwon (Dept. of Mechanical Design Engineering, Chungnam National University) ;
  • Kim, Yong-Hwan (Dept. of Mechanical Design Engineering, Chungnam National University) ;
  • Kim, Gyu-Yong (Dept. of Architectural Engineering, Chungnam National University) ;
  • Yun, Hyun-Do (Dept. of Architectural Engineering, Chungnam National University)
  • 장석준 (충남대학교 건축공학과) ;
  • 손석권 (충남대학교 기계설계공학과) ;
  • 김용환 (충남대학교 기계설계공학과) ;
  • 김규용 (충남대학교 건축공학과) ;
  • 윤현도 (충남대학교 건축공학과)
  • Received : 2015.02.05
  • Accepted : 2015.03.16
  • Published : 2015.08.30

Abstract

This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

본 연구는 섬유혼입률 및 패널 두께가 구형비상체 충격에 의한 강섬유보강 콘크리트(SFRC) 패널의 손상특성에 미치는 영향을 알아보기 위하여 실시되었다. 실험체는 $200{\times}200mm$의 각형 패널로 계획하였으며, 두께는 30 및 50 mm로 설정하였다. 비상체는 직경 20 mm의 강재이며, 속도는 350 m/s로 실험을 실시하였다. 또한 본 연구에서는 SFRC의 역학적 특성과 내충격 성능의 상호관계를 평가하였다. SFRC의 역학적특성은 압축강도, 파괴계수 및 재료의 인성을 평가하였다. 비상체 충격에 의한 패널의 전면손실률은 압축인성이 증가함에 따라 감소하였고, 파괴계수 및 휨인성이 향상됨에 따라 배면손실률이 감소하는 것으로 나타났다. 강섬유보강 콘크리트의 동적특성 평가를 위하여, 상용 프로그램인 ABAQUS/Explicit를 사용하여 유한요소해석을 실시하였다. 해석결과 파괴양상이 유사한 경우 전면 및 배면손실률을 잘 예측하는 것으로 나타났다.

Keywords

References

  1. Kennedy, R. P., "A Review of Procedures for the Analysis and Design of Concrete Structures", Nuclear Engineering and Design, Vol.37, No.2, 1976, pp.183-203. https://doi.org/10.1016/0029-5493(76)90015-7
  2. Army Corps of Engineers, "Fundamentals of Protective Design", Report AT120 7821, 1946.
  3. Hughes, G., "Hard Missile Impact on Reinfoced Concrete", Nuclear Engineering and Design, Vol.77, 1984, pp.23-35. https://doi.org/10.1016/0029-5493(84)90058-X
  4. Almansa, E. M. and Canovas, "Behavior of Normal and Steel Fiber-Reinforced Concrete under Impact of Small Projectiles", Cement and Concrete Research, Vol.29, 1999, pp.1807-1814. https://doi.org/10.1016/S0008-8846(99)00174-X
  5. Kim, S. H., Kang, T. H. K., Hong, S. G., Kim, G. Y., and Yun, H. D., "Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load", Journal of the Korea Concrete Institute, Vol.26, No.6, 2014, pp. 731-739 (in Korean). https://doi.org/10.4334/JKCI.2014.26.6.731
  6. Jang, S. J., Ahn, K. L., and Yun, H. D., "Effects of Aggregate Size and Fiber Volume Fraction on Flexural Properties of Steel Fiber Reinforced Concrete (SFRC)", Journal of the Architectural Institute of Korea, Vol.31, No.2, 2015 (in Korean).
  7. Kim, H. S., Nam, J. S., Hwang, H. K., Jeon, J. K., and Kim, G. Y., "A Stduy on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile", Journal of the Korea Concrete Institute, Vol.25, No.1, 2013, pp.99-106 (in Korean). https://doi.org/10.4334/JKCI.2013.25.1.099
  8. Marar, K., Eren, O., and Celik, T., "Relationship Between Impact Energy and Compression Toughness Energy of High-Strength Fiber-Reinforced Concrete", Materials Letters, Vol.47, 2001, pp.297-304. https://doi.org/10.1016/S0167-577X(00)00253-6
  9. Korea Standards Association, "KS F 2405. Standard Test Method for Compressive Strength of Concrete", 2010 (in Korean).
  10. Ahn, K. L., Jang, S. J., Yun, Y. J., D. G., and Yun, H. D., "Effect of Fiber Volume Fraction on Compressive and Flexural Properties of High- Strength Steel Fiber Reinforced Concrete", Applied Mechanics and Materials, Vol.597, 2014, pp.296-299. https://doi.org/10.4028/www.scientific.net/AMM.597.296
  11. Korea Standards Association, "KS F 2408. Method of Test for Flexural Strength of Concrete", 2000 (in Korean).
  12. ASTM C 1609, "Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)", American Society for Testing Materials, 2012.
  13. Ezeldin, A. S. and Balaguru, P. N., "Normal and High Strength Fiber Reinforced Concrete Under Compression", Journal of Materials in Civil Engineering, Vol.4, No.4, 1992, pp.415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  14. Montaignac, R., Massicotte, B., Charron, J., and Nour, A., "Design of SFRC Structural Elements: Post-Cracking Tensile Strength Measurement", Materials and Structures, Vol. 45, 2012, pp.609-622. https://doi.org/10.1617/s11527-011-9784-z

Cited by

  1. Analysis of High Velocity Impact on SFRC Panels Using ABAQUS vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.141
  2. Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.455