DOI QR코드

DOI QR Code

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye (Department of Biological Sciences, College of Science, Chonnam National University) ;
  • Adelmant, Guillaume (Department of Biological Chemistry Molecular Pharmacology, Harvard Medical School, Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute) ;
  • Marto, Jarrod A. (Department of Biological Chemistry Molecular Pharmacology, Harvard Medical School, Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute) ;
  • Lee, Dong-Hyun (Department of Biological Sciences, College of Science, Chonnam National University)
  • Received : 2015.03.13
  • Accepted : 2015.06.08
  • Published : 2015.08.31

Abstract

Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Keywords

References

  1. Chowdhury, D., Xu, X., Zhong, X., Ahmed, F., Zhong, J., Liao, J., Dykxhoorn, D. M., Weinstock, D. M., Pfeifer, G. P., and Lieberman, J. (2008). A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol. Cell 31, 33-46. https://doi.org/10.1016/j.molcel.2008.05.016
  2. Ciccia, A., and Elledge, S. J. (2010). The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179-204. https://doi.org/10.1016/j.molcel.2010.09.019
  3. Ficarro, S.B., Zhang, Y., Lu, Y., Moghimi, A.R., Askenazi, M., Hyatt, E., Smith, E.D., Boyer, L., Schlaeger, T.M., Luckey, C.J. and Marto, J.A. (2009). Improved electrospray ionization efficiency compensates for diminished chromatographic resolution and enables proteomics analysis of tyrosine signaling in embryonic stem cells. Anal. Chem. 81, 3440-3447. https://doi.org/10.1021/ac802720e
  4. Hamaguchi, M., Meth, J.L., von Klitzing, C., Wei, W., Esposito, D., Rodgers, L., Walsh, T., Welcsh, P., King, M.C., and Wigler, M.H. (2002). DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc. Natl. Acad. Sci. USA 99, 13647-13652. https://doi.org/10.1073/pnas.212516099
  5. Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463-473. https://doi.org/10.1016/S0092-8674(00)00051-9
  6. Kim, J.E., Chen, J., and Lou, Z. (2008). DBC1 is a negative regulator of SIRT1. Nature 451, 583-586. https://doi.org/10.1038/nature06500
  7. Kim, J.E., Chen, J., and Lou, Z. (2009a). p30 DBC is a potential regulator of tumorigenesis. Cell Cycle 8, 2932-2935.
  8. Kim, J.E., Lou, Z., and Chen, J. (2009b). Interactions between DBC1 and SIRT 1 are deregulated in breast cancer cells. Cell Cycle 8, 3784-3785. https://doi.org/10.4161/cc.8.22.10055
  9. Lee, D.H., and Chowdhury, D. (2011). What goes on must come off: phosphatases gate-crash the DNA damage response. Trends Biochem. Sci. 36, 569-577. https://doi.org/10.1016/j.tibs.2011.08.007
  10. Lee, J., and Lee, D.H. (2014). Leucine methylation of protein phosphatase PP4C at C-terminal is critical for its cellular functions. Biochem. Biophys. Res. Commun. 452, 42-47. https://doi.org/10.1016/j.bbrc.2014.08.045
  11. Lee, D.H., Pan, Y., Kanner, S., Sung, P., Borowiec, J.A., and Chowdhury, D. (2010). A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat. Struct. Mol. Biol. 17, 365-372. https://doi.org/10.1038/nsmb.1769
  12. Lee, D.H., Goodarzi, A.A., Adelmant, G.O., Pan, Y., Jeggo, P.A., Marto, J.A., and Chowdhury, D. (2012). Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 31, 2403-2415. https://doi.org/10.1038/emboj.2012.86
  13. Lee, D.H., Acharya, S.S., Kwon, M., Drane, P., Guan, Y., Adelmant, G., Kalev, P., Shah, J., Pellman, D., Marto, J.A., et al. (2014). Dephosphorylation enables the recruitment of 53BP1 to doublestrand DNA breaks. Mol. Cell 54, 512-525. https://doi.org/10.1016/j.molcel.2014.03.020
  14. Magni, M., Ruscica, V., Buscemi, G., Kim, J.E., Nachimuthu, B.T., Fontanella, E., Delia, D., and Zannini, L. (2014). Chk2 and REGgamma-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res. 42, 13150-13160. https://doi.org/10.1093/nar/gku1065
  15. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166. https://doi.org/10.1126/science.1140321
  16. Mu, J.J., Wang, Y., Luo, H., Leng, M., Zhang, J., Yang, T., Besusso, D., Jung, S.Y., and Qin, J. (2007). A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 282, 17330-17334. https://doi.org/10.1074/jbc.C700079200
  17. Nakada, S., Chen, G.I., Gingras, A.C., and Durocher, D. (2008). PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 9, 1019-1026. https://doi.org/10.1038/embor.2008.162
  18. Nakatani, Y., and Ogryzko, V. (2003). Immunoaffinity purification of mammalian protein complexes. Methods Enzymol. 370, 430-444. https://doi.org/10.1016/S0076-6879(03)70037-8
  19. Parikh, J.R., Askenazi, M., Ficarro, S.B., Cashorali, T., Webber, J.T., Blank, N.C., Zhang, Y., and Marto, J.A. (2009). multiplierz: an extensible API based desktop environment for proteomics data analysis. BMC Bioinformatics 10, 364. https://doi.org/10.1186/1471-2105-10-364
  20. Park, J.H., Lee, S.W., Yang, S.W., Yoo, H.M., Park, J.M., Seong, M.W., Ka, S.H., Oh, K.H., Jeon, Y.J., and Chung, C.H. (2014). Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nat. Commun. 5, 5483. https://doi.org/10.1038/ncomms6483
  21. Rozenblatt-Rosen, O., Deo, R.C., Padi, M., Adelmant, G., Calderwood, M.A., Rolland, T., Grace, M., Dricot, A., Askenazi, M., Tavares, M., et al. (2012). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491-495. https://doi.org/10.1038/nature11288
  22. Smith, J., Tho, L.M., Xu, N., and Gillespie, D.A. (2010). The ATMChk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 108, 73-112. https://doi.org/10.1016/B978-0-12-380888-2.00003-0
  23. Wang, B., Zhao, A., Sun, L., Zhong, X., Zhong, J., Wang, H., Cai, M., Li, J., Xu, Y., Liao, J., et al. (2008). Protein phosphatase PP4 is overexpressed in human breast and lung tumors. Cell Res. 18, 974-977. https://doi.org/10.1038/cr.2008.274
  24. Wang, Q., Moore, M.J., Adelmant, G., Marto, J.A., and Silver, P.A. (2013). PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. Genes Dev. 27, 615-626. https://doi.org/10.1101/gad.212308.112
  25. Zannini, L., Buscemi, G., Kim, J.E., Fontanella, E., and Delia, D. (2012). DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J. Mol. Cell Biol. 4, 294-303. https://doi.org/10.1093/jmcb/mjs035
  26. Zheng, H., Yang, L., Peng, L., Izumi, V., Koomen, J., Seto, E., and Chen, J. (2013). hMOF acetylation of DBC1/CCAR2 prevents binding and inhibition of SirT1. Mol. Cell. Biol. 33, 4960-4970. https://doi.org/10.1128/MCB.00874-13

Cited by

  1. Protein phosphatase 4 catalytic subunit is overexpressed in glioma and promotes glioma cell proliferation and invasion vol.37, pp.9, 2016, https://doi.org/10.1007/s13277-016-5054-6
  2. The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells vol.28, pp.9, 2016, https://doi.org/10.1016/j.cellsig.2016.06.011
  3. PP4 deficiency leads to DNA replication stress that impairs immunoglobulin class switch efficiency pp.1476-5403, 2018, https://doi.org/10.1038/s41418-018-0199-z
  4. Tandem Affinity Purification and Mass Spectrometry (TAP‐MS) for the Analysis of Protein Complexes vol.96, pp.1, 2015, https://doi.org/10.1002/cpps.84
  5. CCAR1 and CCAR2 as gene chameleons with antagonistic duality: Preclinical, human translational, and mechanistic basis vol.111, pp.10, 2015, https://doi.org/10.1111/cas.14579