DOI QR코드

DOI QR Code

Detection of Hidden Proximal Caries using Q-ray view in Primary Molars

Q-ray view를 이용한 유구치의 숨은 인접면 우식증 탐지

  • Jeong, Younwook (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Hyoseol (Department of Pediatric Dentistry, College of Dentistry, Kyunghee University) ;
  • Choi, Hyungjun (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Jaeho (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Choi, Byungjai (Department of Pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Kim, Seongoh (Department of Pediatric Dentistry, College of Dentistry, Yonsei University)
  • 정연욱 (연세대학교 치과대학 소아치과학교실) ;
  • 이효설 (경희대학교 치의학전문대학원 소아치과학교실) ;
  • 최형준 (연세대학교 치과대학 소아치과학교실) ;
  • 이제호 (연세대학교 치과대학 소아치과학교실) ;
  • 최병재 (연세대학교 치과대학 소아치과학교실) ;
  • 김성오 (연세대학교 치과대학 소아치과학교실)
  • Received : 2015.02.05
  • Accepted : 2015.04.15
  • Published : 2015.08.31

Abstract

The purpose of this study was to evaluate the ability of Q-ray view (All-in-one Bio, Seoul, Korea) in detection of proximal caries in primary molars with sound marginal ridges. Thirty two children aged 3-9 years (average $5.6{\pm}1.3$ years old) were chosen, and two examiners evaluated 100 proximal surfaces of primary molars with sound marginal ridges. The teeth were examined with; (a) visual examination, (b) Q-ray view, (c) DIAGNOdent (KaVo, Biberach, Germany) and (d) digital periapical radiography. Kappa statistic was used to assess the agreement between each examination method and the degree of caries progression. The kappa values for enamel caries were 0.15 (visual examination), 0.10 (Q-ray view), 0.25 (DIAGNOdent) and 0.68 (digital periapical radiography). The kappa values for dentinal caries were 0.34 (visual examination), 0.56 (Q-ray view), 0.44 (DIAGNOdent) and 0.70 (digital periapical radiography). Although Q-ray view showed low diagnostic ability in detection of enamel caries, it was effective in detection of hidden proximal caries extended into dentin. Q-ray view would be a useful and simple device which could aid pediatric dentists in detection of hidden proximal caries in primary molars especially when examining uncooperative children or disabled persons.

본 연구는 Q-ray view (All in one Bio, Seoul, Korea)가 변연융선이 파괴되지 않은 유구치의 인접면 우식증을 적절히 탐지해 낼 수 있는지 알아보고자 하였다. 두 명의 소아치과의사가 3-9세 사이의 어린이 32명(평균연령 $5.6{\pm}1.3$세)의 유구치 인접면 100개를 시진, Q-ray view, DIAGNOdent (KaVo, Biberach, Germany), 디지털 치근단 방사선사진 촬영으로 평가하였다. 각 검사법과 실제 치료 시 관찰된 인접면 우식증의 진행 정도를 비교하였을 때, 법랑질 우식증에 대한 kappa값은 시진, Q-ray view, DIAGNOdent, 디지털 치근단 방사선사진 촬영 순으로 0.15, 0.10, 0.25, 0.68이었으며, 상아질 우식증에 대한 kappa값은 0.34, 0.56, 0.44, 0.70이었다. Q-ray view는 상아질까지 진행된 유구치의 숨은 인접면 우식증을 탐지하는 데 도움을 줄 수 있는 유용하고 간편한 보조장비가 될 수 있을 것으로 기대된다.

Keywords

References

  1. Mo KH, Yoon JH, Kim SG, Lee SH : Detection of proximal caries using laser fluorescence. J Korean Acad Pediatr Dent, 31:323-330, 2004.
  2. Wilson PR, Beynon AD : Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Arch Oral Biol, 34:85-88, 1989. https://doi.org/10.1016/0003-9969(89)90130-1
  3. Seol JH, Oh YH, Lee NY, Lee SH : Detection of early proximal caries with laser fluorescence. J Korean Acad Pediatr Dent, 31:236-246, 2004.
  4. Mejare I, Grondahl HG, Ottosson E, et al. : Accuracy at radiography and probing for the diagnosis of proximal caries. Eur J Oral Sci, 93:178-184, 1985. https://doi.org/10.1111/j.1600-0722.1985.tb01328.x
  5. Kim YH, Kang BC : The value of periapical radiograph in the diagnosis of interproximal Caries. Korean J Oral Maxillofac Radiol, 30:49-54, 2000.
  6. White SC, Atchison KA, Hewlett ER, Flack VF : Efficacy of FDA guidelines for ordering radiographs for caries detection. Oral Surg Oral Med Oral Pathol, 77:531-540, 1994. https://doi.org/10.1016/0030-4220(94)90237-2
  7. American Academy of Pediatric Dentistry : Guideline on prescribing dental radiographs for infants, children, adolescents, and persons with special health care needs. Pediatr Dent, 34:189-191, 2012.
  8. Newman B, Seow WK, Holcombe T, et al. : Clinical detection of caries in the primary dentition with and without bitewing radiography. Aust Dent J, 54:23-30, 2009. https://doi.org/10.1111/j.1834-7819.2008.01084.x
  9. White SC, Pharoah MJ : Oral radiology: Principles and interpretation, 7th ed., Mosby, 271-298, 2014.
  10. Konig K, Flemming G, Hibst R : Laser-induced autofluorescence spectroscopy of dental caries. Cell Mol Biol (Noisy-le-grand), 44:1293-1300, 1998.
  11. van der Veen MH, Thomas RZ, Huysmans MC, de Soet JJ : Red autofluorescence of dental plaque bacteria. Caries Res, 40:542-545, 2006. https://doi.org/10.1159/000095655
  12. Hope CK, de Josselin de Jong E, Higham SM, et al. : Photobleaching of red fluorescence in oral biofilms. J Periodontal Res, 46:228-234, 2011. https://doi.org/10.1111/j.1600-0765.2010.01334.x
  13. Lussi A, Hellwig E : Performance of a new laser fluorescence device for the detection of occlusal caries in vitro. J Dent, 34:467-471, 2006. https://doi.org/10.1016/j.jdent.2005.11.002
  14. Farah R, Drummond B, Swain M, Williams S : Relationship between laser fluorescence and enamel hypomineralisation. J Dent, 36:915-921, 2008. https://doi.org/10.1016/j.jdent.2008.07.012
  15. Neuhaus K, Longbottom C, Ellwood R, Lussi A : Novel lesion detection aids. Monoqr Oral Sci, 21:52-62, 2009. https://doi.org/10.1159/000224212
  16. van der Veen MH, de Josselin de Jong E : Application of quantitative light-induced fluorescence for assessing early caries lesions. Monoqr Oral Sci, 17:144-162, 2004.
  17. Alammari MR, Smith PW, de Josselin de Jong E, Higham SM : Quantitative light-induced fluorescence (QLF): A tool for early occlusal dental caries detection and supporting decision making in vivo. J Dent, 41:127-132, 2013. https://doi.org/10.1016/j.jdent.2012.08.013
  18. Stookey GK : Quantitative light fluorescence: A technology for early monitoring of the caries process. Dent Clin North Am, 49:753-770, 2005. https://doi.org/10.1016/j.cden.2005.05.009
  19. Al-Khateeb S, Forsberg CM, de Josselin de Jong E, Angmar-Mansson B : A longitudinal laser fluorescence study of white spot lesions in orthodontic patients. Am J Orthod Dentofacial Orthop, 113:595-602, 1998. https://doi.org/10.1016/S0889-5406(98)70218-5
  20. Tranæus S, Al-Khateeb S, Angmar-Mansson B, et al. : Application of quantitative light-induced fluorescence to monitor incipient lesions in caries-active children: A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci, 109:71-75, 2001. https://doi.org/10.1034/j.1600-0722.2001.00997.x
  21. Eggertsson H, Analoui M, Stookey G, et al. : Detection of early interproximal caries in vitro using laser fluorescence, dye-Enhanced laser fluorescence and direct visual examination. Caries Res, 33:227-233, 1999. https://doi.org/10.1159/000016521
  22. Tranæus S, Angmar-Mansson B : Quantitative light-induced fluorescence measurement-a future method for the dentist?. Quintessenz, 53:131-141, 2002.
  23. Kim BI : QLF concept and clinical Implementation. The Journal of the Korean Dental Association, 49:443-450, 2011.
  24. Lee ES, Kang SM, Kim BI, et al. : Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D). J Dent, 41:1264-1270, 2013. https://doi.org/10.1016/j.jdent.2013.08.021
  25. Koenig K, Schneckenburger H : Laser-induced autofluorescence for medical diagnosis. J Fluoresc, 4:17-40, 1994. https://doi.org/10.1007/BF01876650
  26. Coulthwaite L, Pretty IA, Verran J, et al. : The microbiological origin of fluorescence observed in plaque on dentures during QLF analysis. Caries Res, 40:112-116, 2006. https://doi.org/10.1159/000091056
  27. Banerjee A, Yasseri M, Munson M : A method for the detection and quantification of bacteria in human carious dentine using fluorescent in situ hybridisation. J Dent, 30:359-363, 2002. https://doi.org/10.1016/S0300-5712(02)00052-0
  28. Munson M, Banerjee A, Watson T, Wade W : Molecular analysis of the microflora associated with dental caries. J Clin Microbiol, 42:3023-3029, 2004. https://doi.org/10.1128/JCM.42.7.3023-3029.2004
  29. Wicht MJ, Haak R, Noack MJ, et al. : Suppression of caries-related microorganisms in dentine lesions after short-term chlorhexidine or antibiotic treatment. Caries Res, 38:436-441, 2004. https://doi.org/10.1159/000079624
  30. Nyvad B, Kilian M : Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res, 95:369-380, 1987.
  31. Al-Ahmad A, Follo M, Hanning C, et al. : Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol, 58:1359-1366, 2009. https://doi.org/10.1099/jmm.0.011213-0
  32. Lennon AM, Buchalla W, Attin T, et al. : The ability of selected oral microorganisms to emit red fluorescence. Caries Res, 40:2-5, 2006. https://doi.org/10.1159/000088898
  33. Murdoch-Kinch CA, McLean ME : Minimally invasive dentistry. J Am Dent Assoc, 134:87-95, 2003. https://doi.org/10.14219/jada.archive.2003.0021
  34. Lussi A, Hibst R, Paulus R : DIAGNOdent: an optical method for caries detection. J Dent Res, 83:80-83, 2004. https://doi.org/10.1177/154405910408301S16
  35. Pretty IA, Edgar WM, Higham SM : The effect of ambient light on QLF analyses. J Oral Rehabil, 29:369-373, 2002. https://doi.org/10.1046/j.1365-2842.2002.00914.x