DOI QR코드

DOI QR Code

A Study on Target Acquisition and Tracking to Develop ARPA Radar

ARPA 레이더 개발을 위한 물표 획득 및 추적 기술 연구

  • Received : 2015.08.12
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

ARPA(Automatic Radar Plotting Aid) is a device to calculate CPA(closest point of approach)/TCPA(time of CPA), true course and speed of targets by vector operation of relative courses and speeds. The purpose of this study is to develop target acquisition and tracking technology for ARPA Radar implementation. After examining the previous studies, applicable algorithms and technologies were developed to be combined and basic ARPA functions were developed as a result. As for main research contents, the sequential image processing technology such as combination of grayscale conversion, gaussian smoothing, binary image conversion and labeling was deviced to achieve a proper target acquisition, and the NNS(Nearest Neighbor Search) algorithm was appllied to identify which target came from the previous image and finally Kalman Filter was used to calculate true course and speed of targets as an analysis of target behavior. Also all technologies stated above were implemented as a SW program and installed onboard, and verified the basic ARPA functions to be operable in practical use through onboard test.

ARPA(Automatic Radar Plotting Aid)는 자동레이더 플로팅 장치로써, 레이더 물표의 상대침로와 상대방위로 구성된 운동벡터에 본선의 침로와 방위로 구성되는 운동벡터를 가감 연산(벡터연산)하여, 물표의 진침로와 진방위 및 최근접점과 근접시간을 계산하는 장치를 말한다. 본 연구의 목적은 ARPA 레이더를 구현하기 위한 물표의 획득 및 추적 기술을 개발하는 것으로, 이에 관한 여러 선행 연구를 검토하여 적용 가능한 알고리듬 및 기법을 조합하여 기초적인 ARPA 기능을 개발하였다. 주요 연구내용으로, 레이더 영상에서 물표를 획득하기 위하여, 회색조 변환, 가운시안 평활 필터 적용, 이진화 및 라벨링(Labeling)과 같은 순차적 영상 처리 방법을 고안하였고, 이전 영상에서의 물표가 다음 영상에서의 어느 물표인지를 결정하는데 근접이웃탐색알고리듬을 사용하였으며, 물표의 진침로와 진방위를 계산하는 거동해석에 칼만필터를 사용하였다. 또한 이러한 기법을 전산 구현하여 실선실험을 수행하였고, 이를 통해 개발된 ARPA의 기능이 실용상 사용가능함을 검증하였다.

Keywords

References

  1. IEC, IEC 62388 Ed.1.0, 2007
  2. John G. Allen, et al.(2004), "Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces", the Pan-Sydney Area Workshop on Visual Information Processing VIP2003, Sydney. Conferences in Research and Practice in Information Technology, Vol. 36.
  3. Kim B. M. et al.(2005), "An Application of AdaBoost Learning Algorithm and Kalman Filter to Hand Detection and Tracking", Korea Society of Computer Information, Vol. 10, No. 4, pp. 47-56.
  4. Kim D. J.(2000), "Study on Object Extraction from Image Sequence for Target Tracking", doctral thesis, Korea Advanced Institute of Science and Technology
  5. Kim S. P.(2012), Essential Kalman Filter, A-JIN.
  6. Lee H. Y. et al.(2014), "A development of Remote Bird Observation System Using FMCW RADAR", Journal of the Korean Society for Marine Environment and Energy, Vol. 17, No. 3. pp. 247-256. https://doi.org/10.7846/JKOSMEE.2014.17.3.247
  7. Sergio Corda(2009), PPI class description (Technical Paper), Navico Auckland Limited.
  8. Shin H. S. et al. (2009), "Target Acquisition and Tracking of Tracking Radar", Current Industrial and Technological Trends in Areospace, Vol. 7, No. 1. pp 113-118.
  9. Song J. H.(1993), "Implementation of Fast Simulated Annealing for Moving Target Tracking", master thesis, Gradute School of KWANGWOON university.
  10. Wang J. C.(1999), "Extended-Target Detection and Tracking Methods for the IRST", master thesis, Korea Advanced Institute of Science and Technology.
  11. WILLIAM K. PRATT(2001), DIGITAL IMAGE PROCESSING, John Wiley & Sons, Inc.
  12. Yanan Xu (2013), "on Object Tracking Using Kalman Filter", master thesis, graduate school of PaiChai University.

Cited by

  1. A Study on the Standardization of Education Modules for ARPA/Radar Simulation vol.22, pp.6, 2016, https://doi.org/10.7837/kosomes.2016.22.6.631