DOI QR코드

DOI QR Code

The Learning Experience of 7th Graders on NOS (Nature of Science) as a Process in Research-Based "Becoming a Scientist" Mentor-mentee Program

중학생의 "과학자 되어보기" 멘토-멘티 프로그램 참여를 통한 과정으로서 과학의 본성 학습 경험

  • Received : 2015.06.25
  • Accepted : 2015.08.13
  • Published : 2015.08.31

Abstract

This study is a case study examining how research-based 'authentic' science education program contextually facilitates students' learning on NOS as a process. We developed 'Becoming a Scientist' mentor-mentee program and applied it to six Korean 7th graders for 8 months. A mentor, who is also a researcher, provided scaffolding and coaching, and her mentees were to perform the whole process of science research, including selecting the research subject and questions, planning research design, doing experiments, collecting and analysing data, writing research paper, and experiencing poster presentation at an academic conference. The research questions are 1) What would the students experience at every step of their research process?, and 2) Which perceptions would they construct NOS as a process? Data include classroom observations, interview, mentor's journal, and students' learning products. The results show that the mentees have experienced their views of NOS as a process in various ways such as role of research question and purpose, validity of measured value, researcher's subjectivity in interpreting data, experience of making public and peer review, and significance of academic conference. This study has shown that students' actual experience in scientific research enhanced their views about NOS as process without explicit and reflective approaches. We defined 'authenticity' associated with not only with its similarity to what scientists do but to learner's identity as scientific researcher. Based on the situated learning theory, this study sheds light on the necessity of reconsideration about the meaning of authenticity and embodying authentic context in science education for better NOS learning.

본 연구는 연구 기반 '실제적' 과학 교육 프로그램이 맥락적으로 과정으로서 과학의 본성 학습을 촉진함을 밝히고자 한 사례 연구다. 이에 '과학자 되어보기' 멘토-멘티 프로그램을 개발하고 7학년 6명에게 8개월간 적용했다. 이 프로그램에서는 과학 교육 연구자인 멘토가 스캐폴딩과 코칭을 제공하며, 멘티 학생들은 연구 문제 선정, 연구설계, 자료 수집과 분석, 논문 작성 및 학회 발표에 이르기까지 과학연구의 전체 과정을 수행한다. 연구 문제는 1) 암묵적 과학 연구 프로그램의 참여자는 연구 단계별 학습 상황에서 무엇을 경험하는가? 2) 암묵적 과학 연구 프로그램에 참여한 학생은 각 학습 상황에서 '과정으로서 NOS'에 대해 어떤 관점을 구성하는가? 등이다. 수업 관찰, 사후 면담, 멘토의 성찰 보고서, 학생 산출물 등이 수집 및 분석되었다. 연구 결과, 참여 학생들은 1) 연구 문제 망각과 혼란, 2) 자료 오류의 처리와 파기, 3) 연구자 입장에 따른 자료 해석, 4) 전반적 연구 경험과 논문 작성, 5) 학술대회 발표장에서의 경험 등의 다양한 상황에서 연구문제의 역할, 측정값의 유효성, 자료 해석에서의 주관성, 과학 지식의 생성과 동료 심사, 학술 대회의 의의 등 과정으로서의 과학에 대한 각자의 관점을 학습했다. 참여 학생들이 공통적으로 학습한 NOS 관점은 현대적 인식론에 가까웠다. 본 연구는 과학 연구의 구체적 상황과 과정으로서 NOS 학습을 관련지어 보여줌으로써 NOS의 맥락적 학습이 가능함을 보였다. 본 연구에서는 과학자가 하는 일과의 유사성이 아닌 학습자의 주체성 및 의미와 관련지어 '실제성'을 정의했고, 이렇듯 상황학습론적 가정에 입각한 프로그램은 성공적인 NOS 학습을 촉진했다. 본 연구의 가정과 결과는 과학 교육에서 실제성의 의미와 실제적 과학 학습 환경의 구현 방식에 대한 재고의 필요성을 시사한다. 연구 기반 과학 교육 프로그램에서 성공적인 NOS 학습이 가능하도록 하기 위해서는 본 프로그램과 같이 1) 과학자가 하는 일의 주요 요소를 포함함으로써 풍부한 맥락을 제공하고, 2) 반구조화된 수업 설계를 바탕으로 학생이 연구의 주도권을 소유하도록 하며, 3) 과학 연구 내용이 연구자에게 관련되고 의미 있도록 해야 한다.

Keywords

References

  1. Abd-El-Khalick, F., & Lederman, N.G. (2000). Improving science teachers' conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22, 665-701. https://doi.org/10.1080/09500690050044044
  2. Abraham, L. M. (2002). What do high school science students gain from field-based research apprenticeship programs?. The clearing house, 75(5), 229-232. https://doi.org/10.1080/00098650209603945
  3. Barab, S. A., & Hay, K. E. (2001). Doing science at the elbows of experts: Issues related to the science apprenticeship camp. Journal of Research in Science Teaching, 38(1), 70-102. https://doi.org/10.1002/1098-2736(200101)38:1<70::AID-TEA5>3.0.CO;2-L
  4. Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students' understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509. https://doi.org/10.1002/tea.10086
  5. Constantina, S., & Constantine, S. (2014). Subjectivity and objectivity in science: An educational approach. Advances in Historical Studies, 3, 183-193. https://doi.org/10.4236/ahs.2014.34016
  6. Crawford, B. A., Krajcik, J. S., & Marx, R. W. (1999). Elements of a community of learners in a middle school science classroom. Science Education, 83(6), 701-723. https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<701::AID-SCE4>3.0.CO;2-2
  7. Do, S., Hwang, Y., & Park, J. (2009). The importance of reflection on the middle school science experiment class for teaching the nature of science. Journal of science education, 33(2), 184-192. https://doi.org/10.21796/jse.2009.33.2.184
  8. Edelson, D. C. (1998). Realising authentic science learning through the adaptation of scientific practice. International handbook of science education, 1, 317-331.
  9. Han, S., Yang, C., & Noh, T. (2013). Instructional influences of explicit and reflective scientific inquiry learning program about nature of scientific inquiry. Journal of Korean Chemical Society, 57(1), 115-126. https://doi.org/10.5012/jkcs.2013.57.1.115
  10. Hunter, A. B., Laursen, S. L., & Seymour, E. (2007). Becoming a scientist: The role of undergraduate research in students' cognitive, personal, and professional development. Science Education, 91(1), 36-74. https://doi.org/10.1002/sce.20173
  11. Kang, S., & Noh, T. (2014). Nature of science. Seoul: Bookshill.
  12. Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of research in science teaching, 39(7), 551-578. https://doi.org/10.1002/tea.10036
  13. Kim, M. (2008). The meta-analysis of studies by views on nature of science. Master thesis, Chonnam National University.
  14. Kim, K., & Sim. J. (2008). Scientifically gifted students' perception of the impact of R&E program based on KAIST freshmen survey. Journal of the Korean Association for Science Education, 28(4), 282-290.
  15. Kim, M., & Kim, H. (2006). An analysis of the biology inquiry tasks in science high-school: Focusing on the features of scientific reasoning in authentic scientific inquiry. Journal of Korean Biology Education, 34(4), 330-341.
  16. Kim, M., & Kim, H. (2007). Development and application of authentic open inquiry program in high school biology curriculum. Journal of Korean Biology Education, 35(4), 521-535.
  17. Kim, Y. (2012). Qualitative research methodologyI: Bricoleur (2nd Ed.). Seoul: Academy Press.
  18. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry: The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65-83. https://doi.org/10.1002/tea.21125
  19. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  20. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  21. Martin, B., Kass, H., & Brouwer, W. (1990). Authentic science: A diversity of meanings. Science Education, 74(5), 541-554. https://doi.org/10.1002/sce.3730740505
  22. Moss, D. M., Abrams, E. D., & Kull, J. A. (1998). Can we be scientists too? Secondary students' perceptions of scientific research from a project-based classroom. Journal of Science Education and Technology, 7(2), 149-161. https://doi.org/10.1023/A:1022564507639
  23. National Research Council [NRC]. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
  24. National Science Teachers Association [NSTA]. (1971). NSTA position statement on school science education for the 70's. The Science Teacher, 38, 46-51.
  25. NGSS Lead States. (2013). Next Generation Science Standards. Washington, DC: National Academies Press. Available at http://www.nextgenscience.org/next-generation-science-standards.
  26. Nott, M., & Wellington, J. (1993). Your nature of science profile: An activity for science teachers. School Science Review, 75, 109-109.
  27. O'Neill, D. K., & Polman, J. L. (2004). Why educate “little scientists?” Examining the potential of practice-based scientific literacy. Journal of Research in Science Teaching, 41(3), 234-266. https://doi.org/10.1002/tea.20001
  28. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What "ideas-about-science" should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692-720. https://doi.org/10.1002/tea.10105
  29. Park, J. (2007). A study of new models for scientific inquiry activity through understanding the nature of science (NOS): A proposal for a synthetic view of the NOS. Journal of the Korean Association for Research in Science Education, 27(2), 153-167.
  30. Park, E., & Hong, H. (2010). The effects of explicit instructions on nature of science for the science-gifted. Journal of the Korean Association for Science Education, 30(2), 249-260.
  31. Richmond, G., & Kurth, L.A. (1999). Moving from outside to inside: High school students' use of apprenticeships as vehicles for entering the culture and practice of science. Journal of Research in Science Teaching, 36, 677-697. https://doi.org/10.1002/(SICI)1098-2736(199908)36:6<677::AID-TEA6>3.0.CO;2-#
  32. Ryder, J., & Leach, J. (1999). University science students' experiences of investigative project work and their images of science. International Journal of Science Education, 21(9), 945-956. https://doi.org/10.1080/095006999290246
  33. Ryder, J., Leach, J., & Driver, R. (1999). Undergraduate science students' images of science. Journal of Research in Science Teaching, 36, 201-219. https://doi.org/10.1002/(SICI)1098-2736(199902)36:2<201::AID-TEA6>3.0.CO;2-H
  34. Sadler, T. D., Burgin, S., McKinney, L., & Ponjuan, L. (2010). Learning science through research apprenticeships: A critical review of the literature. Journal of Research in Science Teaching, 47(3), 235-256. https://doi.org/10.1002/tea.20326
  35. Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42. https://doi.org/10.1080/03057260802681839
  36. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. https://doi.org/10.1002/sce.20065
  37. Schwartz, R. S., & Crawford, B. A. (2004). Authentic scientific inquiry as context for teaching nature of science: Identifying critical element. In L. Flick, & N. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  38. Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education, 88(4), 610-645. https://doi.org/10.1002/sce.10128
  39. Schwartz, R. S., Lederman, N. G., & Lederman, J. S. (2008, March). An instrument to assess views of scientific inquiry: The VOSI questionnaire. In annual meeting of the National Association for Research in Science Teaching, Baltimore, MD.
  40. Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage Publications, Inc.
  41. Wong, S. L., & Hodson, D. (2009). From the horse's mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93(1), 109-130. https://doi.org/10.1002/sce.20290
  42. Wong, S. L., & Hodson, D. (2010). More from the horse's mouth: What scientists say about science as a social practice. International Journal of Science Education, 32(11), 1431-1463. https://doi.org/10.1080/09500690903104465
  43. Yang, C., Lee, J., Kim, Y., & Noh, T. (2011). Elementary students' epistemological views on the nature of scientific measurement. Elementary Science Education, 30(4), 430-441.
  44. Yin, R. K. (2009). Case study research: Design and methods (4th Ed.). Thousand Oaks, CA: Sage.

Cited by

  1. 관찰과 재현에 대한 예비 생물교사들의 가치지향점 -객관성을 중심으로- vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0617
  2. An Analysis of the Nature of Science Included in the First Grade of Middle School Science Textbook for the 2009 Revised Curriculum vol.21, pp.3, 2017, https://doi.org/10.24231/rici.2017.21.3.225
  3. 교육 대상에 따른 야외 지질학 탐구 요소 특성 비교 : 지질 답사 교육 사례를 중심으로 vol.10, pp.3, 2015, https://doi.org/10.15523/jksese.2017.10.3.235
  4. 지식정보처리역량 관점에서 중학생들의 과학탐구활동 어려움 분석 vol.38, pp.3, 2015, https://doi.org/10.14697/jkase.2018.38.3.441
  5. 지식정보처리역량에 대한 과학교사의 인식 조사 vol.38, pp.5, 2015, https://doi.org/10.14697/jkase.2018.38.5.693