DOI QR코드

DOI QR Code

Effect of Window Function for Measurement of Ultrasonic Nonlinear Parameter Using Fast Fourier Transform of Tone-Burst Signal

톤버스트 신호의 퓨리에 변환을 이용한 초음파 비선형 파라미터 측정에서 창함수가 미치는 영향

  • 이경준 (한양대학교 대학원 융합기계공학과) ;
  • 김종범 (한양대학교 대학원 융합기계공학과) ;
  • 송동기 (한양대학교 대학원 융합기계공학과) ;
  • 장경영 (한양대학교 기계공학부)
  • Received : 2015.05.12
  • Accepted : 2015.07.02
  • Published : 2015.08.30

Abstract

In ultrasonic nonlinear parameter measurement using the fast Fourier transform(FFT) of tone-burst signals, the side lobe and leakage on spectrum because of finite time and non-periodicity of signals makes it difficult to measure the harmonic magnitudes accurately. The window function made it possible to resolve this problem. In this study, the effect of the Hanning and Turkey window functions on the experimental measurement of nonlinear parameters was analyzed. In addition, the effect of changes in tone burst signal number with changes in the window function on the experimental measurement was analyzed. The result for both window functions were similar and showed that they enabled reliable nonlinear parameter measurement. However, in order to restore original signal amplitude, the amplitude compensation coefficient should be considered for each window function. On a separate note, the larger number of tone bursts was advantageous for stable nonlinear parameter measurement, but this effect was more advantageous in the case of the Hanning window than the Tukey window.

톤버스트 신호를 이용한 초음파 비선형 파라미터 측정에서 기본파와 고조파 성분의 크기를 측정하기 위해 고속 퓨리에 변환(FFT)을 이용하는 경우, 유한시간 및 비주기성으로 인한 스펙트럼상의 사이드 로브와 누설로 인하여 고조파 성분의 크기를 정확하게 측정하는 것이 어렵게 된다. 이러한 문제를 극복하기 위해 창함수를 사용할 수 있는데, 본 연구에서는 해닝창과 터키창에 대해서 실제 실험신호를 대상으로 비선형 파라미터 측정에 미치는 영향을 비교, 분석하였다. 또한 톤버스트 개수가 창함수에 따라 어떤 영향을 미치는지에 대해서도 함께 분석하였다. 분석 결과, 창함수는 비선형 파라미터의 안정적인 측정에 효과적이며, 해닝창과 터키창은 동일한 측정 효과를 나타내었다. 단, 신호진폭을 정확하게 복원하기 위해서는 창함수마다의 고유한 진폭보정계수가 고려되어야 한다. 한편 톤버스트 개수가 많을수록 비선형 파라미터의 안정적 측정에 유리하지만 그렇지 않을 경우에는 해닝창이 터키창보다 다소 유리한 것으로 나타났다.

Keywords

References

  1. S. H. Baek, T. H. Lee, C. S Kim and K. Y. Jhang, "Ultrasonic nonlinearity measurement in heat treated SA508 alloy: influences of grains and precipitates," Journal of the Korean Society for Nondestructive Testing, Vol. 30, No. 5, pp. 451-457 (2010)
  2. D. Donskoy, A. Sutin and A. Ekimov, "Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing," NDT&E International, Vol. 34, No. 4, pp. 231-238 (2001) https://doi.org/10.1016/S0963-8695(00)00063-3
  3. A. Hikata and C. Elbaum, "Generation of ultrasonic second and third harmonics due to dislocations," Physical Review, Vol. 144, No. 2, pp. 469-477 (1966) https://doi.org/10.1103/PhysRev.144.469
  4. K. C. Kim and K. Y. Jhang, "Application of bispectral analysis to estimate nonlinear acoustic parameter," Journal of the Korean Society for Nondestructive Testing, Vol. 19, No. 2, pp. 85-92 (1999)
  5. J. Ha and K. Y. Jhang, "Precise estimation of nonlinear parameter in pulse-like ultrasonic signal," Journal of the Korean Society for Nondestructive Testing, Vol. 26, No. 2, pp. 77-83 (2006)
  6. F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, pp. 51-83 (1978) https://doi.org/10.1109/PROC.1978.10837
  7. C. Pantea, C. F. Osterhoudt and D. N. Sinha, "Determinaion of acoustical nonlinear parameter ${\beta}$ of water using the finite amplitude method," Ultrasonics, Vol. 53, No. 5, pp. 1012-1019 (2013) https://doi.org/10.1016/j.ultras.2013.01.008
  8. G. Shui, Y. Wang, P. Huang and J. Qu, "Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints," NDT&E International, Vol. 70, pp. 9-15 (2015) https://doi.org/10.1016/j.ndteint.2014.11.002
  9. J. B. Kim, C. Cheon and K. Y. Jhang, "Evaluation of ultrasonic nonlinear characteristics in heat-treated aluminum alloy," Journal of the Korean Society for Nondestructive Testing, Vol. 33, No. 2, pp. 193-197 (2013) https://doi.org/10.7779/JKSNT.2013.33.2.193
  10. M. A. Drewry and P. D. Wilcox, "Onedimensional time-domain finite-element modelling of nonlinear wave propagation for non-destructive evaluation," NDT&E International, Vol. 61, pp. 45-52 (2014) https://doi.org/10.1016/j.ndteint.2013.09.006
  11. J. H. Cantrell and W. T. Yost, "Nonlinear ultrasonic characterization of fatigue microstructures," International Journal of Fatigue, Vol. 23, No. 1, pp. 487-490 (2001) https://doi.org/10.1016/S0142-1123(01)00162-1
  12. S. Liu, S. Best, S. A. Neild, A. J. Croxford and Z. Zhou, "Measuring bulk material nonlinearity using harmonic generation," NDT&E International, Vol. 48, pp. 46-53 (2012) https://doi.org/10.1016/j.ndteint.2012.02.009
  13. S. Liu, A. J. Croxford, S. A. Neild, and Z. Zhou, "Effects of experimental variables on the nonlinear harmonic generation technique," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, Vol. 58, No. 7, pp. 1442-1451 (2011) https://doi.org/10.1109/TUFFC.2011.1963
  14. S. V. Walker, J. Y. Kim, J. Qu and L. J. Jacobs, "Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves," NDT&E International, Vol. 48, pp. 10-15 (2012) https://doi.org/10.1016/j.ndteint.2012.02.002

Cited by

  1. Assessment of thermal degradation by cumulative variation of ultrasonic nonlinear parameter vol.18, pp.1, 2017, https://doi.org/10.1007/s12541-017-0003-x