DOI QR코드

DOI QR Code

Influence of Oleic and Lauric Acid on the Stability of Magnetorheological Fluids

  • Huang, Yuehua (College of Electrical Engineering & New Energy, China Three Gorges University) ;
  • Jiang, Yuhuan (College of Electrical Engineering & New Energy, China Three Gorges University) ;
  • Yang, Xiongbo (College of Science, China Three Gorges University) ;
  • Xu, Ruizhen (College of Science, China Three Gorges University)
  • Received : 2015.05.11
  • Accepted : 2015.08.13
  • Published : 2015.09.30

Abstract

In this paper, magnetorheological fluids (MRFs) based on micro-sized iron particles dispersed in silicone oil are presented. The iron particles are modified by adding different ratios of oleic acid and lauric acid as surfactants to the suspensions. Lauric acid was found to reduce the stability of the MRFs, and more lauric acid results in a higher rate of sedimentation. Further study showed that the formation and structure of lauric acid may result in the sedimentation of micrometer-sized particles. Meanwhile, the electro-resistance of MRF in this paper shows a decrease from beyond $6000M{\Omega}$ to $190{\Omega}$ with an increase in the external field from 0 mT to 400 mT.

Keywords

References

  1. J. W. Tu, Y. Yu, L. Huang, B. Tu, and J. Y. Xu, Mater. Sci. Technol. 18, 243 (2014).
  2. J. D. Carlson, and M. R. Jolly, Mechatronics, 10, 4 (2000).
  3. Ioan Bica, J. Ind. Eng. Chem. 13, 299 (2007).
  4. Ioan Bica, J. Ind. Eng. Chem. 12, 620 (2006).
  5. S. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, Mater. Struct. 5, 693 (1998).
  6. X. Huang, A. Mohla, W. Hong, A. F. Bastawros, and X.-Q. Feng, Soft Matter. 10, 1537 (2014). https://doi.org/10.1039/c3sm52159a
  7. Y. Shiao, Q.-A. Nguyen, and G.-D. Huang, Mater. Sci. Technol. 18, 16 (2014).
  8. J. P. Rich, Patrick S. Doyle, Gareth H. Mckinley, Rheologica Acta 51, 1 (2012). https://doi.org/10.1007/s00397-011-0608-4
  9. Muhammad Aslam, Yao Xiong-liang, and Deng Zhongchao, J. Marine Sci. Appl. 5, 17 (2006).
  10. J. L. Viota, F. Gonzalez-Caballero, J. D. G. Duran, and A. V. Delgado, J. Colloid Interface Sci. 309, 135 (2007). https://doi.org/10.1016/j.jcis.2007.01.066
  11. M. A. Willard, L. K. Kuriharal, E. E. Carpenter, S. Calvin, and V. G. Harris, Int. Mater. Rev. 49, 125 (2004). https://doi.org/10.1179/095066004225021882
  12. M. T. Lopez-Lopez, and J. de Vicente, J. Mater. Res. 20, 874 (2005). https://doi.org/10.1557/JMR.2005.0108
  13. J. H. Park, M. H. Kwon, and O. Ok. Park, Chem. Eng. 18, 580 (2001).
  14. B. D. Chin, J. H. Park, M. H. Kwon, Rheol. Acta 40, 211 (2001). https://doi.org/10.1007/s003970000150
  15. B. J. Park, C. W. Park, and S. W. Yang, J. Physics: Conference Series 149, 1 (2009).
  16. J. Park, H. H. Song, and H. J. Choi, Mater. Lett. 63, 1350 (2009). https://doi.org/10.1016/j.matlet.2009.03.013
  17. Doina Bica, Ladislau Vekas, Mikhail V. Avdeev, Oana Marinica, Vlad Socoliuc, Maria Balasoiu, Vasil M. Garamus, J. Magn. Magn. Mater. 311, 17 (2007). https://doi.org/10.1016/j.jmmm.2006.11.158

Cited by

  1. Study on the Preparation Process and Properties of Magnetorheological Fluid Treated by Compounding Surfactants vol.21, pp.2, 2016, https://doi.org/10.4283/JMAG.2016.21.2.229
  2. Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid vol.21, pp.2, 2016, https://doi.org/10.4283/JMAG.2016.21.2.244
  3. Influence Factor on Magnetization Property of Carbonyl Iron-based Magnetorheological Fluids vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.622
  4. An experimental study of magnetorheological fluids on electrical conductivity property vol.28, pp.11, 2017, https://doi.org/10.1007/s10854-017-6519-0