DOI QR코드

DOI QR Code

The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis

알칼리 수전해에서 전극재질에 따른 수소생산 특성

  • Moon, Kwangseok (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science)
  • 문광석 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Received : 2014.12.29
  • Accepted : 2015.04.10
  • Published : 2015.06.30

Abstract

This study confirmed the characteristics of hydrogen production according to electrode materials by producing non-diaphragm alkaline water electroanalyzer that can be controlled at medium temperature to produce hydrogen. As a result of the electrochemical characteristics by electrode material ($IrO_2/Ti$, $RuO_2/Ti$, Ti), the highest efficiency was found in $RuO_2/Ti$, as a result of hydrogen production experiment by electrolyte concentration, electrolyte concentration has a tendency to be proportional to hydrogen production and the condition of 30% KOH showed the highest hydrogen production as $118.9m^3/m^3/day$. In the experiment that confirmed hydrogen production according to electrode materials, in case of combination of anode ($IrO^2/Ti$) and cathode ($RuO^2/Ti$), it was $157.55m^3/m^3/day$ that showed a higher hydrogen production by around 6.97% than that of $IrO^2/Ti$ and cathode. It is presumed that the improvement of electrochemical activation of DSA electrode increases hydrogen production and influences the improvement of durability compared to the former electrode so that it enables stable alkaline water electrolysis.

본 연구에서는 중온에서 수소생산이 가능한 무격막형 알칼리수전해 장치를 제작하여 전극재질에 따른 수소생산 특성을 확인하였다. 전극재질($IrO_2/Ti$, $RuO_2/Ti$, Ti)별 전기화학적 특성을 확인한 결과 $RuO_2/Ti$에서 가장 높은 효율을 나타내었고, 전해질 농도별 수소생산량 실험 결과, 전해질 농도와 수소생산량은 비례하는 경향을 보였으며 30% KOH 조건에서 $118.9m^3/m^3/day$로 가장 높은 수소생산량을 확인할 수 있었다. 전극재질별 수소생산량을 확인한 실험에서는 anode($IrO_2/Ti$)와 cathode($RuO_2/Ti$)로 조합 시 $157.55m^3/m^3/day$$IrO_2/Ti$를 cathode로 조합한 결과에 비해 약 6.97% 높은 수소생산량을 보였다. 이는 DSA전극의 전기화학적 활성도 향상에 의한 수소생산량 증대와 기존 전극에 비해 내구성이 향상되어 안정적인 알칼리 수전해가 가능한 것으로 사료된다.

Keywords

References

  1. I. Dincer, "Renewable energy and sustainable development: a crucial review", Renewable and sustainable energy reviews, 4, 2000, 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8
  2. 산업통상자원부, "제2차 국가에너지기본계획", 2014.
  3. George W. Crabtree, Mildred S. Dresselhaus, Michelle V. Buchanan, "The hydrogen economy", American Institute of Physics, 2004, 39-45.
  4. J. D. Holladay, J. Hu, D. L. King, Y. Wang, "An overview of hydrogen production technologies", Catalysis today, 139, 2009, 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  5. Gary J. Stiegel, Massood Ramezan, "Hydrogen from coal gasification: An economical pathway to a sustainable energy future", International Journal of Coal Geology, 65, 2006, 173-190. https://doi.org/10.1016/j.coal.2005.05.002
  6. Kai Zeng, Dongke Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Progress in Energy and Combustion Science, 36, 2010, 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  7. D. M. F. Santos, C. A. C. Sequeira, D. Maccio, A. Saccone, J.L. Figueiredo, "Platinum-rare earth electrodes for hydrogen evolution in alkaline water electrolysis", Int J Hydrogen Energy, 2, 2013, 3137-3145.
  8. 손재익, 박대원, "수소에너지 제조기술", 도서출판 아진, 2007.
  9. R. Subbaraman, D. Tripkovic, K. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nature Material, 11, 2012, 550-557. https://doi.org/10.1038/nmat3313
  10. J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, "Towards the computational design of solid catalysts", Nature Chemistry, 1, 2009, 37-46. https://doi.org/10.1038/nchem.121
  11. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Norskov, "Computational high-throughput screening of electrocatalytic materials for hydrogen evolution", Nature Material, 5, 2006, 909-913. https://doi.org/10.1038/nmat1752
  12. M. Mavrikakis, "Computational methods: a search engine for catalysts", Nature Material, 5, 2006,. 847-848. https://doi.org/10.1038/nmat1767
  13. J. Greeley, M. Mavrikakis, "Alloy catalysts designed from first principles", Nature Material, 3, 2004, 810-815. https://doi.org/10.1038/nmat1223
  14. J. Greeley, J.K. Norskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, "Hydrogen evolution over bimetallic systems: understanding the trends", ChemPhysChem, 7 , 2006, 1032-1035. https://doi.org/10.1002/cphc.200500663
  15. J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, "Trends in the exchange current for hydrogen evolution", J Electrochem Soc, 152 , 2005, J23-J26. https://doi.org/10.1149/1.1856988
  16. E. Santos, P. Quaino, W. Schmickler, "Theory of electrocatalysis: hydrogen evolution and more", Phys Chem Chem Phys, 14, 2012, 11224-11233. https://doi.org/10.1039/c2cp40717e
  17. R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura, A.P. Paulikas, "Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces", Science, 334, 2011, 1256-1260. https://doi.org/10.1126/science.1211934
  18. M. Wang, L. Chen, L. Sun, "Recent progress in electrochemical hydrogen production with earthabundant metal complexes as catalysts", Energy Environ Sci, 5, 2012, 6763-6778. https://doi.org/10.1039/c2ee03309g
  19. D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R.W. Birkmire, "Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates", Angew Chem Int Ed Engl, 49, 2010, 9859-9862. https://doi.org/10.1002/anie.201004718
  20. N. Marquet, F. Gartner, S. Losse, M. Pohl, H. Junge, M. Beller, "Simple and efficient iridium (III)-catalyzed water oxidations", ChemSusChem, 4, 2011, 1598-1600. https://doi.org/10.1002/cssc.201100217
  21. N. H. Chou, P. N. Ross, A. T. Bell, T. D. Tilley, "Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation", Chem-SusChem, 4, 2011, 1566-1569.
  22. W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. N. Ma, H. Zhou, "Electrocatalytic and photocatalytic hydrogen production in aqueous solution by a molecular cobalt complex", Angew Chem Int Ed Engl, 51, 2012, 5941-5944. https://doi.org/10.1002/anie.201200082
  23. F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, S. Rapino, L. Hoober-Burkhardt, "Tailored functionalization of carbon nanotubes for electrocatalytic water splitting and sustainable energy applications", ChemSusChem, 4, 2011, 1447-1451. https://doi.org/10.1002/cssc.201100089
  24. M. Miles, "Evaluation of electrocatalysts for water electrolysis in alkaline solutions", J Electroanal Chem, 60, 1975, 89-96. https://doi.org/10.1016/S0022-0728(75)80205-1
  25. S. Trasatti, "Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions", J Electroanal Chem, 39, 1972, 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
  26. S. H. Ahn, S. J. Hwang, S. J. Yoo, I. Choi, H. Kim, J. H. Jang, "Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis", J Mater Chem, 22, 2012, 15153-15159. https://doi.org/10.1039/c2jm31439h
  27. Hu W and Lee J. Y. "Electrocatalytic properties of $Ti_2Ni/Ni-Mo$ composite electrodes for hydrogen evolution reaction", Int. J. Hydrogen Energy, 23, 1998, 253-257.
  28. Wei-Xiang Chen, "Kinetics of hydrogen evolution reaction on hydrogen storage alloy electrode in alkaline solution and effects of surface modification on the electrocatalytic activity for hydrogen evolution reaction", Int. J. Hydrogen Energy, 26, 2001, 603-608. https://doi.org/10.1016/S0360-3199(00)00119-1
  29. K. Kameyama, K. Tsukada, K. Yahikozawa, Y. Takasu, "Surface Characterization of $RuO_2-IrO_2-TiO_2$ Coated Titanium Electrodes", J. Electrochem. Soc., 141, 1993, 643-647.
  30. A. J. Appleby, G. Crepy, J. Jacquelin, "High efficiency water electrolysis in alkaline solution", Int J. Hydrogen Energy, 3, 1978, 21-37. https://doi.org/10.1016/0360-3199(78)90054-X

Cited by

  1. Study on Electrochemical Degradation of Nicosulfuron by IrO2-Based DSA Electrodes: Performance, Kinetics, and Degradation Mechanism vol.16, pp.3, 2019, https://doi.org/10.3390/ijerph16030343