DOI QR코드

DOI QR Code

Next generation digital microfluidic technology: Electrophoresis of charged droplets

  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • Received : 2015.03.10
  • Accepted : 2015.04.27
  • Published : 2015.06.01

Abstract

Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

Keywords

Acknowledgement

Supported by : Pukyong National University

References

  1. J. S. Eow and M. Ghadiri, Chem. Eng. Process., 42, 259 (2003). https://doi.org/10.1016/S0255-2701(02)00036-3
  2. M. Hase, S.N. Watanabe and K. Yoshikawa, Phys. Rev. E, 74, 046301 (2006). https://doi.org/10.1103/PhysRevE.74.046301
  3. Y. M. Jung, H. C. Oh and I. S. Kang, J. Colloid Interface Sci., 322, 617 (2008). https://doi.org/10.1016/j.jcis.2008.04.019
  4. D. J. Im, J. Noh, D. Moon and I. S. Kang, Anal. Chem., 83, 5168 (2011). https://doi.org/10.1021/ac200248x
  5. B. Vajdi Hokmabad, B. Sadri, M.R. Charan and E. Esmaeilzadeh, Colloids Surf., A, 401, 17 (2012). https://doi.org/10.1016/j.colsurfa.2012.02.043
  6. M. Takinoue, Y. Atsumi and K. Yoshikawa, Appl. Phys. Lett., 96, 104105 (2010). https://doi.org/10.1063/1.3358385
  7. R. Mukhopadhyay, Anal. Chem., 78, 1401 (2006). https://doi.org/10.1021/ac069373u
  8. M. Washizu, IEEE T. Ind. Appl., 34, 732 (1998). https://doi.org/10.1109/28.703965
  9. M. G. Pollack, R. B. Fair and A.D. Shenderov, Appl. Phys. Lett., 77, 1725 (2000). https://doi.org/10.1063/1.1308534
  10. J. Lee, H. Moon, J. Fowler, T. Schoellhammer and C. J. Kim, Sens. Actuators, A, 95, 259 (2002). https://doi.org/10.1016/S0924-4247(01)00734-8
  11. M. Abdelgawad and A.R. Wheeler, Adv. Mater., 21, 920 (2009). https://doi.org/10.1002/adma.200802244
  12. M. J. Jebrail and A.R. Wheeler, Curr. Opin. Chem. Biol., 14, 574 (2010). https://doi.org/10.1016/j.cbpa.2010.06.187
  13. O.D. Velev, B.G. Prevo and K.H. Bhatt, Nature, 426, 515 (2003). https://doi.org/10.1038/426515a
  14. P.R. C. Gascoyne, J.V. Vykoukal, J.A. Schwartz, T. J. Anderson, D.M. Vykoukal, K.W. Current, C. McConaghy, F.F. Becker and C. Andrews, Lab Chip, 4, 299 (2004). https://doi.org/10.1039/b404130e
  15. T.P. Hunt, D. Issadore and R.M. Westervelt, Lab Chip, 8, 81 (2008). https://doi.org/10.1039/B710928H
  16. D. Issadore, T. Franke, K. A. Brown, T. P. Hunt and R.M. Westervelt, J. Microelectromech. Syst., 18, 1220 (2009). https://doi.org/10.1109/JMEMS.2009.2030422
  17. Y. J. Zhao, U.C. Yi and S.K. Cho, J. Microelectromech. S, 16, 1472 (2007). https://doi.org/10.1109/JMEMS.2007.906763
  18. D. Issadore, K. J. Humphry, K.A. Brown, L. Sandberg, D. A. Weitz and R.M. Westervelt, Lab Chip, 9, 1701 (2009). https://doi.org/10.1039/b822357b
  19. T.B. Jones, J.D. Fowler, Y. S. Chang and C. J. Kim, Langmuir, 19, 7646 (2003). https://doi.org/10.1021/la0347511
  20. C.A. Cartier, A.M. Drews and K. J.M. Bishop, Lab Chip, 14, 4230 (2014). https://doi.org/10.1039/C4LC00811A
  21. Y. M. Jung and I. S. Kang, Biomicrofluidics, 3, 022402 (2009). https://doi.org/10.1063/1.3122299
  22. Y. M. Jung and I. S. Kang, Biomicrofluidics, 4, 024104 (2010). https://doi.org/10.1063/1.3427356
  23. D. J. Im, B. S. Yoo, M.M. Ahn, D. Moon and I. S. Kang, Anal. Chem., 85, 4038 (2013). https://doi.org/10.1021/ac303778j
  24. Y. M. Jung, H. C. Oh and I. S. Kang, J. Colloid Interface Sci., 322, 617 (2008). https://doi.org/10.1016/j.jcis.2008.04.019
  25. T. B. Jones, Langmuir, 18, 4437 (2002). https://doi.org/10.1021/la025616b
  26. K. H. Kang, Langmuir, 18, 10318 (2002). https://doi.org/10.1021/la0263615
  27. D. J. Im and I. S. Kang, J. Colloid Interface Sci., 266, 127 (2003). https://doi.org/10.1016/S0021-9797(03)00546-0
  28. J. Zeng and T. Korsmeyer, Lab Chip, 4, 265 (2004). https://doi.org/10.1039/b403082f
  29. P.M. Young and K. Mohseni, J. Fluid Eng.-T Asme, 130, 081603 (2008). https://doi.org/10.1115/1.2956606
  30. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006). https://doi.org/10.1002/anie.200503540
  31. X. Z. Niu, F. Gielen, A. J. deMello and J.B. Edel, Anal. Chem., 81, 7321 (2009). https://doi.org/10.1021/ac901188n
  32. A. R. Thiam, N. Bremond and J. Bibette, Phys. Rev. Lett., 102, 188304 (2009). https://doi.org/10.1103/PhysRevLett.102.188304
  33. W.D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar and H. A. Stone, Nature, 461, 377 (2009). https://doi.org/10.1038/nature08294
  34. F. Mugele, Nature, 461, 356 (2009). https://doi.org/10.1038/461356a
  35. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006). https://doi.org/10.1002/anie.200503540
  36. X. Niu, F. Gielen, A. J. DeMello and J.B. Edel, Anal. Chem., 81, 7321 (2009). https://doi.org/10.1021/ac901188n
  37. B. Ahn, K. Lee, R. Panchapakesan and K.W. Oh, Biomicrofluidics, 5, 024113 (2011). https://doi.org/10.1063/1.3604393
  38. F. Guo, X. H. Ji, K. Liu, R. X. He, L.B. Zhao, Z. X. Guo, W. Liu, S. S. Guo and X. Z. Zhao, Appl. Phys. Lett., 96, 193701 (2010). https://doi.org/10.1063/1.3360812
  39. W. Wang, C. Yang, Y. Liu and C. M. Li, Lab Chip, 10, 559 (2010). https://doi.org/10.1039/b924929j
  40. H. T. Ochs and R. R. Czys, Nature, 327, 606 (1987). https://doi.org/10.1038/327606a0
  41. W.D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar and H. A. Stone, Nature, 461, 377 (2009). https://doi.org/10.1038/nature08294
  42. J. S. Eow and M. Ghadiri, Chem. Eng. J., 85, 357 (2002). https://doi.org/10.1016/S1385-8947(01)00250-9
  43. J.S. Eow, M. Ghadiri, A.O. Sharif and T. J. Williams, Chem. Eng. J., 84, 173 (2001). https://doi.org/10.1016/S1385-8947(00)00386-7
  44. L. Zheng, Z.-H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee and Z. L. Wang, Nano Energy, 9, 291 (2014). https://doi.org/10.1016/j.nanoen.2014.07.024
  45. Z.-H. Lin, G. Cheng, W. Wu, K. C. Pradel and Z. L. Wang, ACS Nano, 8, 6440 (2014). https://doi.org/10.1021/nn501983s
  46. Z.-H. Lin, G Cheng, S. Lee, K. C. Pradel and Z. L. Wang, Adv. Mater., 26, 4690 (2014). https://doi.org/10.1002/adma.201400373
  47. S.-H. Kwon, J. Park, W. K. Kim, Y. Yang, E. Lee, C. J. Han, S.Y. Park, J. Lee and Y. S. Kim, Energy Environ. Sci., 7, 3279 (2014). https://doi.org/10.1039/C4EE00588K
  48. G. Cheng, Z.-H. Lin, Z.-l. Du and Z. L. Wang, ACS Nano, 8, 1932 (2014). https://doi.org/10.1021/nn406565k
  49. Z.-H. Lin, G. Cheng, L. Lin, S. Lee and Z.L. Wang, Angew. Chem. Int. Ed., 52, 12545 (2013). https://doi.org/10.1002/anie.201307249
  50. D. Choi, H. Lee, D. J. Im, I. S. Kang, G. Lim, D. S. Kim and K.H. Kang, Sci. Rep.-Uk, 3, 2037 (2013). https://doi.org/10.1038/srep02037
  51. P. Nemes, I. Marginean and A. Vertes, Anal. Chem., 79, 3105 (2007). https://doi.org/10.1021/ac062382i
  52. D.B. Hager, N. J. Dovichi, J. Klassen and P. Kebarle, Anal. Chem., 66, 3944 (1994). https://doi.org/10.1021/ac00094a015
  53. R.T. Kelly, J. S. Page, I. Marginean, K. Tang and R.D. Smith, Anal. Chem., 80, 5660 (2008). https://doi.org/10.1021/ac800508q
  54. A. Venter, P.E. Sojka and R.G. Cooks, Anal. Chem., 78, 8549 (2006). https://doi.org/10.1021/ac0615807
  55. H.T. Yudistira, V.D. Nguyen, S. B.Q. Tran, T. S. Kang, J. K. Park and D. Byun, Appl. Phys. Lett., 98, 083501 (2011). https://doi.org/10.1063/1.3555346
  56. J.U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M. S. Strano, A.G. Alleyne, J.G. Georgiadis, P. M. Ferreira and J. A. Rogers, Nat. Mater., 6, 782 (2007). https://doi.org/10.1038/nmat1974
  57. D.W. Lee, D. J. Im and I. S. Kang, J. Phys. Chem. C, 117, 3426 (2013). https://doi.org/10.1021/jp312212e
  58. M.M. Ahn, D. J. Im, J.G. Kim, D.W. Lee and I.S. Kang, J. Phys. Chem. Lett., 5, 3021 (2014). https://doi.org/10.1021/jz501511z
  59. G. Quincke, Pogg. Ann., 113, 513 (1861).
  60. R. A. Millikan, Phys. Rev., 2, 109 (1913). https://doi.org/10.1103/PhysRev.2.109
  61. J. C. Carruthers, Trans. Faraday Soc., 34, 300 (1938). https://doi.org/10.1039/tf9383400300
  62. W. Dickinson, Trans. Faraday Soc., 37, 140 (1941). https://doi.org/10.1039/tf9413700140
  63. A. J. Taylor and F.W. Wood, Trans. Faraday Soc., 53, 523 (1957). https://doi.org/10.1039/tf9575300523
  64. K. G. Marinova, R. G. Alargova, N.D. Denkov, O.D. Velev, D. N. Petsev, I. B. Ivanov and R.P. Borwankar, Langmuir, 12, 2045 (1996). https://doi.org/10.1021/la950928i
  65. J.K. Beattie and A.M. Djerdjev, Angew. Chem. Int. Ed., 43, 3568 (2004). https://doi.org/10.1002/anie.200453916
  66. A. M. Schoeler, D. N. Josephides, S. Sajjadi, C.D. Lorenz and P. Mesquida, J. Appl. Phys., 114, 144903 (2013). https://doi.org/10.1063/1.4824180
  67. T. Mochizuki, Y. H. Mori and N. Kaji, AIChE J., 36, 1039 (1990). https://doi.org/10.1002/aic.690360710
  68. A. Khayari and A.T. Perez, IEEE T. Dielec. Elec. Insul., 9, 589 (2002). https://doi.org/10.1109/TDEI.2002.1024437
  69. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez and D.A. Weitz, Angew. Chem. Int. Ed., 45, 2556 (2006). https://doi.org/10.1002/anie.200503540
  70. Y. M. Jung and I. S. Kang, Biomicrofluidics, 4 (2010).
  71. Y. M. Jung and I. S. Kang, Biomicrofluidics, 3, 22402 (2009). https://doi.org/10.1063/1.3122299
  72. T. Liu, S. Seiffert, J. Thiele, A.R. Abate, D.A. Weitz and W. Richtering, Proc. Natl. Acad. Sci. U. S. A., 109, 384 (2012). https://doi.org/10.1073/pnas.1019196109
  73. J.C. Bird, W.D. Ristenpart, A. Belmonte and H.A. Stone, Phys. Rev. Lett., 103, 164502 (2009). https://doi.org/10.1103/PhysRevLett.103.164502
  74. Y.Z. Zhang, Y.H. Liu, X.L. Wang, Y. Shen, R. J. Ji and B.P. Cai, Langmuir, 29, 1676 (2013). https://doi.org/10.1021/la3046737
  75. A. M. Drews, H.-Y. Lee and K. J. M. Bishop, Lab Chip, 13, 4295 (2013). https://doi.org/10.1039/c3lc50849h
  76. D.W. Lee, D. J. Im and I.S. Kang, Appl. Phys. Lett., 100, 221602 (2012). https://doi.org/10.1063/1.4723633
  77. C.P. Lee, H. C. Chang and Z. H. Wei, Appl. Phys. Lett., 101, 014103 (2012). https://doi.org/10.1063/1.4733611
  78. D. J. Im, M.M. Ahn, B. S. Yoo, D. Moon, D.W. Lee and I. S. Kang, Langmuir, 28, 11656 (2012). https://doi.org/10.1021/la3014392
  79. B. S. Hamlin and W.D. Ristenpart, Phys. Fluids, 24, 012101 (2012). https://doi.org/10.1063/1.3674301
  80. B. Khorshidi, M. Jalaal, E. Esmaeilzadeh and F. Mohammadi, J. Colloid Interface Sci., 352, 211 (2010). https://doi.org/10.1016/j.jcis.2010.08.026
  81. M. Jalaal, B. Khorshidi and E. Esmaeilzadeh, Exp. Therm. Fluid Sci., 34, 1498 (2010). https://doi.org/10.1016/j.expthermflusci.2010.07.014
  82. S. Mhatre and R. M. Thaokar, Phys. Fluids, 25, 072105 (2013). https://doi.org/10.1063/1.4813236
  83. P. Rezai, S. Salam, P. R. Selvaganapathy and B. P. Gupta., Lab Chip, 12, 1831 (2012). https://doi.org/10.1039/c2lc20967e
  84. B. Ahn, K. Lee, R. Panchapakesan and K.W. Oh, Biomicrofluidics, 5, 024113 (2011). https://doi.org/10.1063/1.3604393
  85. W. Wang, C. Yang, Y. Liu and C. M. Li, Lab Chip, 10, 559 (2010). https://doi.org/10.1039/b924929j
  86. H. Zhou and S. Yao, Lab Chip, 13, 962 (2013). https://doi.org/10.1039/c2lc41060e
  87. K. Choi, M. Im, J.-M. Choi and Y.-K. Choi, Microfluid. Nanofluid., 12, 821 (2012). https://doi.org/10.1007/s10404-011-0921-3
  88. M. M. Ahn, D. J. Im and I. S. Kang, Analyst, 138, 7362 (2013). https://doi.org/10.1039/c3an01623d
  89. D. J. Im, J. Noh, N.W. Yi, J. Park and I. S. Kang, Biomicrofluidics, 5, 044112 (2011). https://doi.org/10.1063/1.3665222
  90. A. T. Perez, J. Electrostat., 56, 199 (2002). https://doi.org/10.1016/S0304-3886(02)00063-3
  91. N. Felici, Rev. Gen. Elect., 75, 1145 (1966).
  92. D.W. Lee, D. J. Im and I. S. Kang, Langmuir, 29, 1875 (2013). https://doi.org/10.1021/la3040775
  93. A. M. Schoeler, D. N. Josephides, S. Sajjadi and P. Mesquida, Colloids Surf., A, 461, 18 (2014). https://doi.org/10.1016/j.colsurfa.2014.07.035
  94. A. M. Schoeler, D. N. Josephides, A. S. Chaurasia, S. Sajjadi and P. Mesquida, Appl. Phys. Lett., 104, 074104 (2014). https://doi.org/10.1063/1.4866039
  95. S.-B. Jeon, D. Kim, G.-W. Yoon, J.-B. Yoon and Y.-K. Choi, Nano Energy, 12, 636 (2015). https://doi.org/10.1016/j.nanoen.2015.01.039
  96. J.C. Baygents and D.A. Saville, J. Chem. Soc., Faraday Trans., 87, 1883 (1991). https://doi.org/10.1039/ft9918701883
  97. S.M. Lee, D. J. Im and I. S. Kang, Phys. Fluids, 12, 1899 (2000). https://doi.org/10.1063/1.870439
  98. G. I. Taylor, Proc. R. Soc. London Ser A., 291, 159 (1964).
  99. D. Moon, D. J. Im, S. Lee and I. S. Kang, Exp. Therm. Fluid Sci., 53, 251 (2014). https://doi.org/10.1016/j.expthermflusci.2013.12.016
  100. H.T. Yudistira, V.D. Nguyen, P. Dutta and D. Byun, Appl. Phys. Lett., 96, 023503 (2010). https://doi.org/10.1063/1.3280077
  101. S. Levine and R. N. O'Brien, J. Colloid Interface Sci., 43, 616 (1973). https://doi.org/10.1016/0021-9797(73)90409-8
  102. C.D. Hendricks, J. Colloid Sci., 17, 249 (1962). https://doi.org/10.1016/0095-8522(62)90040-5
  103. C. J. Hogan, P. Biswas and D.-r. Chen, J. Phys. Chem. B, 113, 970 (2009). https://doi.org/10.1021/jp807765n
  104. J.G. Kim, D. J. Im, Y. M. Jung and I. S. Kang, J. Colloid Interface Sci., 310, 599 (2007). https://doi.org/10.1016/j.jcis.2007.02.007
  105. P. Beranek, R. Flittner, V. Hrobar, P. Ethgen and M. Pribyl, AIP Advances, 4, 067103 (2014). https://doi.org/10.1063/1.4881675
  106. A.M. Drews, M. Kowalik and K. J. M. Bishop, J. Appl. Phys., 116, 074903 (2014). https://doi.org/10.1063/1.4893308
  107. A.M. Drews, C. A. Cartier and K. J.M. Bishop, Langmuir, 31, 3808 (2015). https://doi.org/10.1021/acs.langmuir.5b00342
  108. B. S. Lee, H.-J. Cho, J.-G. Lee, N. Huh, J.-W. Choi and I. S. Kang, J. Colloid Interface Sci., 302, 294 (2006). https://doi.org/10.1016/j.jcis.2006.05.060
  109. A. Abbott, Nature, 424, 870 (2003). https://doi.org/10.1038/424870a
  110. Y.-C. Tung, A.Y. Hsiao, S. G. Allen, Y.-s. Torisawa, M. Ho and S. Takayama, Analyst, 136, 473 (2011). https://doi.org/10.1039/C0AN00609B
  111. A. E.M. Seiler and H. Spielmann, Nat. Protocols, 6, 961 (2011). https://doi.org/10.1038/nprot.2011.348
  112. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A. D. Griffiths and C.A. Merten, Chem. Biol., 15, 427 (2008). https://doi.org/10.1016/j.chembiol.2008.04.004
  113. G. Villar, A.D. Graham and H. Bayley, Science, 340, 48 (2013). https://doi.org/10.1126/science.1229495

Cited by

  1. 디지털 미세유체를 이용한 미세녹조류 형질전환에서의 세포벽의 영향 분석 vol.21, pp.2, 2015, https://doi.org/10.7464/ksct.2015.21.2.090
  2. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array vol.16, pp.10, 2015, https://doi.org/10.1039/c6lc00118a
  3. 유리상 탄소입자의 직접 접촉충전에 의한 전기영동 현상연구 vol.54, pp.4, 2015, https://doi.org/10.9713/kcer.2016.54.4.568
  4. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids vol.6, pp.None, 2015, https://doi.org/10.1038/srep31901
  5. Ratcheted electrophoresis of Brownian particles vol.108, pp.20, 2015, https://doi.org/10.1063/1.4950801
  6. Electrostatic Origins of the Positive and Negative Charging Difference in the Contact Charge Electrophoresis of a Water Droplet vol.33, pp.48, 2015, https://doi.org/10.1021/acs.langmuir.7b03281
  7. Droplet Conductivity Strongly Influences Bump and Crater Formation on Electrodes during Charge Transfer vol.34, pp.25, 2015, https://doi.org/10.1021/acs.langmuir.8b01234
  8. Contact Charge Electrophoresis: Fundamentals and Microfluidic Applications vol.34, pp.22, 2018, https://doi.org/10.1021/acs.langmuir.7b02946
  9. A continuous droplet electroporation system for high throughput processing vol.143, pp.23, 2015, https://doi.org/10.1039/c8an01259h
  10. Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants vol.39, pp.23, 2015, https://doi.org/10.1002/elps.201800176
  11. Helical micromotor operating under stationary DC electrostatic field vol.150, pp.1, 2015, https://doi.org/10.1063/1.5055830
  12. Statistical Analysis of Droplet Charge Acquired during Contact with Electrodes in Strong Electric Fields vol.35, pp.11, 2015, https://doi.org/10.1021/acs.langmuir.8b04254
  13. Influence of Surface Wettability on Discharges from Water Drops in Electric Fields vol.35, pp.14, 2015, https://doi.org/10.1021/acs.langmuir.9b00374
  14. 전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가 vol.57, pp.6, 2015, https://doi.org/10.9713/kcer.2019.57.6.898
  15. Wall Effects on Hydrodynamic Drag and the Corresponding Accuracy of Charge Measurement in Droplet Contact Charge Electrophoresis vol.36, pp.17, 2015, https://doi.org/10.1021/acs.langmuir.0c00052
  16. 디지털 전기천공시스템에서 형광 염료로 표지 된 DNA 전달 효율의 정량화 vol.58, pp.3, 2015, https://doi.org/10.9713/kcer.2020.58.3.450
  17. Effect of Deformation on Droplet Contact Charge Electrophoresis vol.36, pp.35, 2015, https://doi.org/10.1021/acs.langmuir.0c01465
  18. Coalescence of Two Oppositely Charged Droplets at Constant Electric Potential vol.59, pp.2, 2015, https://doi.org/10.9713/kcer.2021.59.2.247