DOI QR코드

DOI QR Code

A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers

  • Thenepalli, Thriveni (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jun, Ahn Young (Chemical Engineering Department, Kwangwoon University) ;
  • Han, Choon (Chemical Engineering Department, Kwangwoon University) ;
  • Ramakrishna, Chilakala (Hanil Cement) ;
  • Ahn, Ji Whan (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2014.11.18
  • Accepted : 2015.03.25
  • Published : 2015.06.01

Abstract

A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the most abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning

References

  1. J. Aizenberg, J. Hanson, M. Ilan, L. Leiserowitz, T.F. Koetzle, L. Addadi and S. Weiner, Fed. Am. Soc. Exp. Bio. J., 9, 262 (1995).
  2. M. Ukrainczyk, J. Kontrec, V. Babic-Ivancic, L. Brecevic and D. Kralj, Pow. Technol., 171, 192 (2007). https://doi.org/10.1016/j.powtec.2006.10.046
  3. J. Kontrec, M. Ukrainczyk, V. Babic-Ivancic, L. Brecevic and D. Kralj, Croa. Chim. Act., 84, 25 (2011).
  4. J.W. Ahn, J. H. Kim and S. J. Co, WO2007/078017 A1, July 12 (2007).
  5. S.D. Skapin and I. Sondi, J. Colloid Interface Sci., 347, 221 (2010). https://doi.org/10.1016/j.jcis.2010.03.070
  6. Pavel Fellner, Jana Jurisova and Ladislav Pach, Acta Chim. Slov., 4, 3 (2011).
  7. P. Fellner, J. Jurisova, J. Kozankova and L. Pach, Acta Chim. Slov., 5, 5 (2012). https://doi.org/10.2478/v10188-012-0001-7
  8. R. Beck and J.P. Andreassen, Ame. Ins. Chem. Eng. J., 58, 107 (2012). https://doi.org/10.1002/aic.12566
  9. J. Jiang, Y. Zhang, X. Yang, X. He, X. Tang and J. Liu, Adv. Pow. Technol., 25, 615 (2014). https://doi.org/10.1016/j.apt.2013.10.001
  10. S.M. El-Sheikh, S. El-Sherbiny, A. Barhoum and Y. Deng, Colloids Surf., A: Phys. Eng. Asp., 422, 44 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.020
  11. E. Dalas, P. Klepetsanis and P. G. Koutsoukos, Langmuir, 15, 8322 (1999). https://doi.org/10.1021/la981366g
  12. B. Cheng, M. Lei, J. Yu and X. Zhao, Mater. Lett., 58, 1565 (2004). https://doi.org/10.1016/j.matlet.2003.10.027
  13. Z. Yao, M. Xia, H. Li, T. Chen, Y. Ye and H. Zheng, Crit. Rev. Environ. Sci. Technol., 44, 2502 (2014). https://doi.org/10.1080/10643389.2013.829763
  14. P. Stratton, An overview of the North American Calcium Carbonate Market, Roskill Information Services Ltd., October, 1 (2012).
  15. J.W. Ahn, H.S. Kim, H. Kim, S.H. Yoon, J.S. Kim and G.W. Sung, J. Ceram. Pro. Res., 3, 62 (2002).
  16. J.W. Ahn, J. H. Kim and H. S. Park, WO 2007/078018 A1, July 12.
  17. J. K. Park, H. S. Park, J.W. Ahn, H. Kim and C. H. Park, J. Korean Cry. Gro Cry Tech., 14, 110 (2004).
  18. Seasonal Fluctuation of Atmospheric $CO_2$, National Oceanic and Atmospheric Administration (NOAA), http://co2now.org/Current-CO2/CO2-Trend/seasonalfluctuation-of-atmospheric-co2.html. (2015).
  19. $CO_2$ Emissions Performance of Car Manufacturers in 2011, European Environment Agency Report, 1 (2012).
  20. European vehicle market statistics pocket book, The International Council on Clean Transportation., 1 (2014).
  21. D. Weill, G. Klink, L. Besland and G. Rouilloux, Plastics. The future for Automakers and Chemical Companies, AT Kearney, 1 (2012).
  22. L. Burelle, 2012 Financial Results, Plastic Omnium, 1 (2013).
  23. P. Viswanathan, Petrochemical Market Trends and Opportunities for South Asia, http://www.petrochemconclave.com/presentation/2013/Ms.PViswanathan.pdf (2013).
  24. Automotive plastics market for passenger cars, by type (Polypropylene, Polyurethrane, HDPE, ABS, Polycarbonate & Composites), application (Interior, Exterior & Under Bonnet) & Geography-Trends and Forecasts to 2018, markets and markets.com (2013).
  25. J. Richardson, Market Outlook: Polymers World Turned on Its Head (2013).
  26. Hetain Mistry, India to outweigh Chinese polyolefin/polypropylene demand growth over the next years, September 2014, 1 (2014).
  27. P. Callais, Outlook for PE and PP Resins, Townsend Solutions Presentation (2011).
  28. S. Rana, J.K. Parikh and P. Mohanty, Korean J. Chem. Eng., 30, 626 (2013). https://doi.org/10.1007/s11814-012-0157-2
  29. O. Wolf, C. Delgado, L. Barruetabena and O. Salas, Assessment of the Environmental Advantages and Drawbacks of Existing and emerging Polymers Recovery Processes, JRC Scientific and Technical Reports (2007).
  30. Satoru Moritomi, Tsuyoshi Watanabe and Susumu Kanzaki, R&D report, Sumi. Kag., 2010-1, 1 (2010).
  31. P. Pandey, S. Mohanty and S. K. Nayak, Korean J. Chem. Eng., 31, 1480 (2014). https://doi.org/10.1007/s11814-014-0094-3
  32. J. M. Adams, Clay Min., 28, 509 (1993). https://doi.org/10.1180/claymin.1993.028.4.03
  33. P. Dahal, J. H. Kim and Y. C. Kim, Korean J. Chem. Eng., 31, 1 (2014). https://doi.org/10.1007/s11814-013-0189-2
  34. Carbital$^{TM}$ 110 and Carbital$^{TM}$ 120 in Polypropylene, Technical Information Plastics (2000).
  35. M. Gahleitner, C. Grein and K. Bernreitner, Eur. Polym. J., 48, 49 (2012). https://doi.org/10.1016/j.eurpolymj.2011.10.013
  36. Y. Lin, H. Chen, C.M. Chan and J. Wu, Eur. Polym. J., 47, 294 (2011). https://doi.org/10.1016/j.eurpolymj.2010.12.004
  37. P. Rungruang, B. P. Grady and P. Supaphol, Colloids Surf., A.: Phys. Eng. Asp., 275, 114 (2006). https://doi.org/10.1016/j.colsurfa.2005.09.029
  38. H. Yuang, C. Guangmei, Y. Zhen, L. Hongwu and W. Yong, Eur. Poly. J., 41, 2753 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.034
  39. M. Avella, S. Cosco, M.L. Di Lorenzo, E. Di Pace, M.E. Errico and G. Gentile, Eur. Polym. J., 42, 1548 (2006). https://doi.org/10.1016/j.eurpolymj.2006.01.009
  40. S. Mishra, S. H. Sonawane and R. P. Singh, J. Poly. Sci: Part B: Poly. Phys., 43, 107 (2005). https://doi.org/10.1002/polb.20296
  41. C.M. Chan, J. Wu, J.X. Li and Y.K. Cheung, Polymer, 43, 2981 (2002). https://doi.org/10.1016/S0032-3861(02)00120-9
  42. O. Durcova, P. Michlik and L. Knotek, Polym. Test., 8, 269 (1989).
  43. A. Tabtiang and R. Venables, Eur. Poly. J., 36, 137 (2000). https://doi.org/10.1016/S0014-3057(99)00055-5
  44. M. C. G. Rocha, A. H. M. F.T. Silva, F. M. B. Coutinho and A. N. Silva, Polym. Test., 24, 1049 (2005). https://doi.org/10.1016/j.polymertesting.2005.05.008
  45. P. Etelaaho, S. Haveri and P. Jarvela, Poly. Compo., 32, 464 (2011). https://doi.org/10.1002/pc.21065
  46. J. Zhang, B. Han, N. Zhou, J. Fang, J. Wu, Z. Ma, H. Mo and J. Shen, J. Appl. Polym. Sci., 119, 3560 (2011). https://doi.org/10.1002/app.33037
  47. M. R. Meng and Q. Dou, J. Mac. Sci., Part B: Phy., 48, 213 (2009). https://doi.org/10.1080/00222340802566184
  48. W. C. J. Zuiderduin, C. Westzaan, J. Huetink and R. J. Gaymans, Polymer, 44, 261 (2003). https://doi.org/10.1016/S0032-3861(02)00769-3
  49. J. Biswas, H. Kim and S. Choe, J. Appl. Polym. Sci., 99, 2627 (2006). https://doi.org/10.1002/app.22802
  50. P. Supaphol, W. Harnsiri and J. Junkasem, J. Appl. Polym. Sci., 92, 201 (2004). https://doi.org/10.1002/app.13432
  51. J. Biswas, H. Kim, B. H. Lee and S. Choe, J. Appl. Polym. Sci., 109, 1420 (2008). https://doi.org/10.1002/app.24998
  52. Y. S. Thio, A. S. Agon, R. E. Cohen and M. Weinberg, Polymer, 43, 3661 (2002). https://doi.org/10.1016/S0032-3861(02)00193-3
  53. K. Yang, Q. Yang, G. Li, Y. Zhang and P. Zhang, Polym. Eng. Sci., 47, 95 (2007). https://doi.org/10.1002/pen.20677
  54. B. Cioni and A. Lazzeri, Compo. Int., 17, 533 (2010). https://doi.org/10.1163/092764410X513486
  55. Tran Dai Lam, Tran Vinh Hoang, Duong Tuan Quang and Jong Seung Kim, Mater. Sci. Eng., 501, 87 (2009). https://doi.org/10.1016/j.msea.2008.09.060
  56. D. M. Ansari and G. J. Price, J. Appl. Poly. Sci., 88, 1951 (2003). https://doi.org/10.1002/app.11877
  57. D. Eiras and L. A. Pessan, Mater. Res., 12, 517 (2009). https://doi.org/10.1590/S1516-14392009000400023
  58. Z. Yao, L. Ge, X. Ji, J. Tang, M. Xia and Y. Xi, J. Alloys Comp., 621, 389 (2015). https://doi.org/10.1016/j.jallcom.2014.10.017
  59. Z. Yao, M. Xia, L. Ge, T. Chen, H. Li, Y. Ye and H. Zheng, Fib. and Polym., 15, 1278 (2014). https://doi.org/10.1007/s12221-014-1278-5
  60. Z.T. Yao, T. Chen, H.Y. Li, M. S. Xia, Y. Ye and H. Zheng, J. Hazat. Mater., 262, 212 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.062
  61. M. Xia, Z. Yao, L. Ge, T. Chen and H. Li, J. Comp. Mater., 28, 1 (2014).
  62. E. Dalas, E. Kallitsis and P. G. Koutsoukos, J. Cry. Grow., 89, 287 (1988). https://doi.org/10.1016/0022-0248(88)90412-5
  63. H. Konno, Y. Nanri and M. Kitamura, Pow. Technol., 123, 33 (2002). https://doi.org/10.1016/S0032-5910(01)00424-7
  64. E. He, W. Shang and S. Chen, In: Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 1, 431 (2000).
  65. F. Mustata, N. Tudorachi and D. Rosu, Compo. Part B., 43, 702 (2012). https://doi.org/10.1016/j.compositesb.2011.11.047
  66. Tran Dai Lam, Tran Vinh Hoang, Duong Tuan Quang and Jong Seung Kim, Mater. Sci. Eng., 501, 87 (2009). https://doi.org/10.1016/j.msea.2008.09.060
  67. D. M. Ansari and G. J. Price, J. Appl. Poly. Sci., 88, 1951 (2003). https://doi.org/10.1002/app.11877
  68. S. J. Day, S.P. Thompson, J.E. Parker and Aneurin Evans, Astro. Astro., A&A 553, A 68, 1 (2013). https://doi.org/10.1051/0004-6361/201321138
  69. S. Gopi, V.K. Subramanian and K. Palanisamy, Mater. Res. Bul., 48, 1906 (2013). https://doi.org/10.1016/j.materresbull.2013.01.048
  70. S. P. Thompson, J. E. Parker, S.R. Street and C. C. Tang, Journal of Physics: Conference Series (Condensed Matter and Materials Physics Conference (CMMP10)), 286, 012030 (2011).
  71. S. Gopi and V.K. Subramanian, Ind. J. Chem., 52A, 342 (2013).
  72. Y.Y. Kim, N. B. J. Hetherington, E. H. Noel, R. Kroger, J. M. Charnock, H. K. Christenson and F. C. Meldrum, Angew. Chem., Int. Ed., 50, 12572 (2011). https://doi.org/10.1002/anie.201104407
  73. Yuya Oaki, Ryota Adachi and Hiroaki Imai, Polym. J., 44, 612 (2012). https://doi.org/10.1038/pj.2012.29
  74. Jiban Saikia and Gopal Das, J. Env. Chem. Eng., 2, 1165 (2014). https://doi.org/10.1016/j.jece.2014.04.016
  75. Lee Kabalah-Amitai, Boaz Mayzel, Yaron Kauffmann, A. N. Fitch, Leonid Bloch, Pupa U. P. A. Gilbert and Boaz Pokroy, Science, 340, 454 (2013). https://doi.org/10.1126/science.1232139
  76. G. Wolf, E. Konigsberger, H. G. Schmidt, L.-C. Konigsberger and H. Gamsjager, J. Ther. Anal and Calori., 60, 463 (2000). https://doi.org/10.1023/A:1010114131577
  77. J. Wang and U. Becker, Ame. Miner., 94, 380 (2009). https://doi.org/10.2138/am.2009.2939
  78. Qiaona Hu, Jiaming Zhang, Henry Teng and U. Becker, Ame. Miner., 97, 1437 (2012). https://doi.org/10.2138/am.2012.3983
  79. A. S. Schenk, E. J. Albarracin, Y.-Y. Kim, Johannes Ihli and F.C. Meldrum, Chem. Commun., 50, 4729 (2014). https://doi.org/10.1039/c4cc01093k
  80. J.D. Rodriguez-Blanco, S. Shaw and L.G. Benning, Nanoscale, 3, 265 (2011). https://doi.org/10.1039/C0NR00589D
  81. Giuseppe Falini, Simona Fermani, Michela Reggi, Branka Njegic Dzakula and Damir Kralj, Chem. Commun., 50, 15370 (2014). https://doi.org/10.1039/C4CC05054A
  82. Amin Azdarpour, Mohammad Asadullah, Erfan Mohammadian, Radzuan Junin, Hossein Hamidi, Muhammad Manan and Ahmad Rafizan Mohamad Daud, Chem. Eng. J., 264, 425 (2015). https://doi.org/10.1016/j.cej.2014.11.125
  83. Raffaella Demichelis, Paolo Raiteri, Julian D. Gale and Roberto Dovesi, Crys. Grow. Des., 13, 2247 (2013). https://doi.org/10.1021/cg4002972
  84. Daria B. Trushina, Tatiana V. Bukreeva, Mikhail V. Kovalchuk and Maria N. Antipina, Mater. Sci. Eng., C 45, 644 (2014). https://doi.org/10.1016/j.msec.2014.04.050
  85. A. Arizzi, G. Cultrone, M. Brummer and H. Viles, Cons. Buil. Mater., 75, 375 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.026
  86. Yuki Sugiura, Kazuo Onuma and Atushi Yamazaki, Chem. Lett., 44, 20 (2015). https://doi.org/10.1246/cl.140823
  87. Shinya Yamada, Akiko Yamamoto and Toshihiro Kasuga, J. Mater. Sci.: Mater. Med., 25, 2639 (2014). https://doi.org/10.1007/s10856-014-5302-5
  88. Lyu Gyu, Park Sangdae and Sur Gil Soo, Korean J. Chem. Eng., 16, 538 (1999). https://doi.org/10.1007/BF02698281

Cited by

  1. A novel rapid mist spray technique for synthesis of single phase precipitated calcium carbonate using solid-liquid-gas process vol.33, pp.9, 2015, https://doi.org/10.1007/s11814-016-0093-7
  2. Effects of modified LDPE on physico-mechanical properties of HDPE/CaCO3 composites vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0159-6
  3. Utilization of milk of lime (MOL) originated from carbide lime waste and operating parameters optimization study for potential precipitated calcium carbonate (PCC) production vol.75, pp.18, 2015, https://doi.org/10.1007/s12665-016-6053-z
  4. Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite vol.53, pp.2, 2015, https://doi.org/10.4191/kcers.2016.53.2.222
  5. 판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가 vol.54, pp.2, 2016, https://doi.org/10.9713/kcer.2016.54.2.145
  6. Fractal dimension analysis of interface and impact strength in core-shell structural bamboo plastic composites vol.26, pp.3, 2015, https://doi.org/10.1007/s13726-016-0503-z
  7. Carbonation resistance of concrete: limestone addition effect vol.69, pp.2, 2015, https://doi.org/10.1680/jmacr.16.00371
  8. A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications vol.55, pp.4, 2017, https://doi.org/10.9713/kcer.2017.55.4.443
  9. Shrinkage and Warpage Optimization of Expanded‐Perlite‐Filled Polypropylene Composites in Extrusion‐Based Additive Manufacturing vol.302, pp.10, 2015, https://doi.org/10.1002/mame.201700143
  10. Chloride ingress in concrete: limestone addition effects vol.70, pp.6, 2015, https://doi.org/10.1680/jmacr.17.00177
  11. Synthesis of precipitated calcium carbonate: a review vol.33, pp.2, 2015, https://doi.org/10.1007/s13146-017-0341-x
  12. Are functional fillers improving environmental behavior of plastics? A review on LCA studies vol.626, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2018.01.149
  13. CaCO3 film synthesis from ladle furnace slag: morphological change, new material properties, and Ca extraction efficiency vol.25, pp.12, 2015, https://doi.org/10.1007/s12613-018-1699-z
  14. The study of fly ash filler behaviour in the polymer matrix of polyethyleneterephthalate vol.1, pp.None, 2015, https://doi.org/10.15328/cb1018
  15. Polypropylene composite material and its rheological and mechanical properties depending on the size of the fillerCaCO3 vol.525, pp.None, 2019, https://doi.org/10.1088/1757-899x/525/1/012006
  16. A fungal mycelium templates the growth of aragonite needles vol.7, pp.37, 2015, https://doi.org/10.1039/c9tb01169b
  17. Environmental and economic prospects of biomaterials in the automotive industry vol.21, pp.8, 2015, https://doi.org/10.1007/s10098-019-01735-8
  18. Adsorption isotherms and thermal behavior of hybrids based on quercetin and inorganic fillers vol.138, pp.3, 2019, https://doi.org/10.1007/s10973-019-08257-x
  19. A Global Perspective on Microplastics vol.125, pp.1, 2020, https://doi.org/10.1029/2018jc014719
  20. Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride vol.27, pp.9, 2015, https://doi.org/10.1007/s12613-020-1994-3
  21. Nano CaCO3 Incorporation with Polypropylene to Reduce Film Water Vapor Permeability for Packaging Application vol.13, pp.4, 2020, https://doi.org/10.3923/ajsr.2020.275.283
  22. How did the carrier shell Xenophora crispa (König, 1825) build its shell? Evidence from the Recent and fossil record vol.53, pp.4, 2015, https://doi.org/10.1111/let.12367
  23. Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite vol.10, pp.11, 2015, https://doi.org/10.3390/cryst10110960
  24. 라이신 첨가에 의한 폐 굴껍질 이용 vaterite형 탄산칼슘 제조 vol.59, pp.1, 2015, https://doi.org/10.9713/kcer.2021.59.1.118
  25. Nanocomposite Polymer Electrolytes of Sodium Alginate and Montmorillonite Clay vol.26, pp.8, 2015, https://doi.org/10.3390/molecules26082139
  26. The Influence of Nano CaCO3 on Nucleation and Interface of PP Nano Composite: Matrix Processability and Impact Resistance vol.13, pp.9, 2015, https://doi.org/10.3390/polym13091389
  27. Calcium Carbonate as Functional Filler in Polyamide 12-Manipulation of the Thermal and Mechanical Properties vol.9, pp.6, 2021, https://doi.org/10.3390/pr9060937
  28. Dispersed filler based on synthetic calcium carbonate - requirements for applications quality vol.83, pp.1, 2015, https://doi.org/10.20914/2310-1202-2021-1-303-308
  29. Calcium carbonate nanoparticles effects on cement plast properties vol.27, pp.8, 2021, https://doi.org/10.1007/s00542-020-05136-6
  30. Role of intercalated water in calcium hydroxide interlayers for carbonation reaction vol.420, pp.3, 2015, https://doi.org/10.1016/j.cej.2021.130422
  31. Synchronously Strengthen and Toughen Polypropylene Using Tartaric Acid-Modified Nano-CaCO3 vol.11, pp.10, 2015, https://doi.org/10.3390/nano11102493