DOI QR코드

DOI QR Code

A simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell cultures

  • Kim, Gun-Joong (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • Received : 2015.01.11
  • Accepted : 2015.04.08
  • Published : 2015.06.01

Abstract

We have developed a simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions to increase the recovery and separation efficiency of the anticancer agent paclitaxel from plant cell culture. The simultaneous process under the conditions of extracting solution (90% aqueous methanol), pH 2.2, extraction time, 6min, ratio of extracting solution to biomass, 1 : 1 (v/w), extraction temperature, $40^{\circ}C$, adsorbent type, sylopute, and ratio of adsorbent to biomass, 0.08 : 1 (w/w), facilitated 1.97-fold higher recovery of paclitaxel in a shorter extraction time than the conventional solvent extraction process. In addition, biomass-derived tar compounds were successfully removed by the simultaneous process alone (average removal >97%). Using the simultaneous process, the paclitaxel extraction efficiency was improved, biomass-derived tar compounds were removed, and the purification process was simplified at the same time.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M.C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A.T. McPhail, J. Am. Chem. Soc., 93, 2325 (1971). https://doi.org/10.1021/ja00738a045
  2. J. H. Kim, Korean J. Biotechnol. Bioeng., 21, 1 (2006).
  3. W. P. McGuire, E. K. Rowinsky, N.B. Rosenhein, F.C. Grumbine, D. S. Ettinger, D.K. Armstrong and R.C. Donehower, Int. J. Gynecol. Obstet., 31, 298 (1990).
  4. J.R. Hsiao, S.F. Leu and B.M. Huang, J. Oral Pathol. Med., 38, 188 (2009). https://doi.org/10.1111/j.1600-0714.2008.00732.x
  5. K. Rao, J. Hanuman, C. Alvarez, M. Stoy, J. Juchum, R. Davies and R. Baxley, Pharm. Res., 12, 1003 (1995). https://doi.org/10.1023/A:1016206314225
  6. H. K. Choi, J. S. Son, G. H. Na, S. S. Hong, Y. S. Park and J.Y. Song, Korean J. Plant Biotechnol., 29, 59 (2002). https://doi.org/10.5010/JPB.2002.29.1.059
  7. E. Baloglu and D. G. I. Kingston, J. Nat. Prod., 62, 1068 (1999). https://doi.org/10.1021/np990040k
  8. B. Zhang, R. Yang and C.Z. Liu, Sep. Purif. Technol., 62, 480 (2008). https://doi.org/10.1016/j.seppur.2008.02.013
  9. W. K. Kim, H. J. Chae and J. H. Kim, Biotechnol. Bioproc. Eng., 15, 481 (2010). https://doi.org/10.1007/s12257-010-0053-8
  10. J. H Kwon, Y. H. Choi, H.W. Chung and G.D. Lee, Intern. J. Food Sci. Technol., 41, 67 (2006). https://doi.org/10.1111/j.1365-2621.2005.01037.x
  11. D. P. Fulzele and R.K. Satdive, J. Chromatogr. A, 1063, 9 (2005). https://doi.org/10.1016/j.chroma.2004.11.020
  12. F. Chen, K. Mo, Z. Liu, F. Yang, K. Hou, S. Li, Y. Zu and L. Yang, Molecules, 19, 9689 (2014). https://doi.org/10.3390/molecules19079689
  13. Y. Y. Shu, M. Y. Ko and Y. S. Chang, Microchem. J., 74, 131 (2003). https://doi.org/10.1016/S0026-265X(02)00180-7
  14. X. Pan, H. Liu, G. Jia and Y.Y. Shu, Biochem. Eng. J., 5, 173 (2000). https://doi.org/10.1016/S1369-703X(00)00057-7
  15. X. Pan, G. Niu and H. Liu, Chem. Eng. Process., 42, 129 (2003). https://doi.org/10.1016/S0255-2701(02)00037-5
  16. J. E. Hyun and J. H. Kim, Korean J. Biotechnol. Bioeng., 23, 281 (2008).
  17. J. Y. Lee and J. H. Kim, Sep. Purif. Technol., 80, 240 (2011). https://doi.org/10.1016/j.seppur.2011.05.001
  18. G. J. Kim and J. H. Kim, Process Biochem., In Press (2014).
  19. H. K. Choi, T. L. Adams, R.W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, J. S. Song, S. S. Hong and H. S. Lee, US Patent, 5,871,979 (1999).
  20. K. Y. Jeon and J. H. Kim, Korean J. Biotechnol. Bioeng., 23, 557 (2008).
  21. G. J. Kim, G.Y. Park and J. H. Kim, Korean J. Microbiol. Biotechnol., 41, 272 (2013). https://doi.org/10.4014/kjmb.1303.03001
  22. Y. L. Jeon and J.H. Kim, Korean J. Chem. Eng., 30, 1954 (2013). https://doi.org/10.1007/s11814-013-0136-2
  23. H. J. Oh, H.R. Jang, K.Y. Jung and J. H. Kim, Process Biochem., 47, 331 (2012). https://doi.org/10.1016/j.procbio.2011.11.004
  24. G. Y. Park, G. J. Kim and J. H. Kim, J. Ind. Eng. Chem., 21, 151 (2015). https://doi.org/10.1016/j.jiec.2014.03.042
  25. Y. Chen, M. Y. Xie and X. F. Gong, J. Food Eng., 81, 162 (2007). https://doi.org/10.1016/j.jfoodeng.2006.10.018
  26. M. Ramil Criado, S. Pombo Da Torre, I. RodriGuez Pereiro and R. Cela Torrijos, J. Chromatogr. A, 1024, 155 (2004). https://doi.org/10.1016/j.chroma.2003.10.068
  27. M. Gfrerer and E. Lankmayr, Anal. Chim. Acta, 533, 203 (2005). https://doi.org/10.1016/j.aca.2004.11.016

Cited by

  1. 식물세포배양으로부터 파클리탁셀 회수를 위한 무기염이 첨가된 액-액 추출 vol.54, pp.1, 2015, https://doi.org/10.9713/kcer.2016.54.1.135
  2. 식물세포배양으로부터 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상 vol.54, pp.1, 2015, https://doi.org/10.9713/kcer.2016.54.1.89
  3. 식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출 vol.54, pp.2, 2015, https://doi.org/10.9713/kcer.2016.54.2.229
  4. 고분자물질을 이용한 분별침전 공정에서 파클리탁셀의 입자크기 감소 vol.54, pp.2, 2015, https://doi.org/10.9713/kcer.2016.54.2.278
  5. Introduction of alkali soaking and microwave drying processes to improve agar quality of Gracilaria verrucosa vol.34, pp.12, 2015, https://doi.org/10.1007/s11814-017-0220-0
  6. Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of 10-deacetylpaclitaxel onto Sylopute vol.22, pp.5, 2017, https://doi.org/10.1007/s12257-017-0247-4
  7. Ultrasonic Assisted Extraction of Paclitaxel from Taxus x media Using Ionic Liquids as Adjuvants: Optimization of the Process by Response Surface Methodology vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091483
  8. Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon vol.23, pp.5, 2018, https://doi.org/10.1007/s12257-018-0259-8
  9. Ionic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC vol.24, pp.9, 2015, https://doi.org/10.3390/molecules24091699
  10. Characteristics and Mechanism of Microwave-assisted Drying of Amorphous Paclitaxel for Removal of Residual Solvent vol.24, pp.3, 2019, https://doi.org/10.1007/s12257-019-0076-8
  11. 바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교 vol.58, pp.2, 2015, https://doi.org/10.9713/kcer.2020.58.2.273
  12. Extraction and purification of ustiloxin A from rice false smut balls by a combination of macroporous resin and high-speed countercurrent chromatography vol.2, pp.1, 2015, https://doi.org/10.1186/s43014-020-00043-9