Characterization of porous carbon nanofibers decorated with Pt catalysts for use as counter electrodes in dye-sensitized solar cells

  • An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • Published : 2015.04.01

Abstract

Porous carbon nanofibers decorated with Pt catalysts (Pt/PCNFs) are prepared by electrospinning and impregnation methods. To synthesize the PCNF, poly(styrene-co-acry-lonitrile) (SAN), a pore-forming agent, is added to polyacrylonitrile (PAN), the carbon nanofiber (CNF) precursor. With regard to photovoltaic properties, Pt/PCNFs fabricated using the optimum amount of 0.5 wt% SAN polymer exhibit a larger open circuit voltage ($V_{oc}$) of 0.73 V, a higher fill factor (FF) of 66.57%, and an excellent photoconversion efficiency (${\eta}$) of 6.47% compared to carbon nanofibers decorated with Pt catalysts (Pt/CNFs) and commercial Pt solutions under standard test conditions ($100mW/cm^2$ (1 sun); AM 1.5G spectrum).

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy (MKE)

References

  1. M. Gratzel, Nature 414 (2001) 338-344. https://doi.org/10.1038/35104607
  2. J.-Y. Lin, J.-H. Liao, and T.-C. Wei, Electrochem. Solid- State Lett. 14 (2011) D41-D44. https://doi.org/10.1149/1.3533917
  3. Y. Hou, D. Wang, X.H. Yang, W.Q. Fang, B. Zhang, H.F. Wang, G.Z. Lu, P. Hu, H.J. Zhao, and H.G. Yang, Nat. Commun. 4 (2013) 1583-1590. https://doi.org/10.1038/ncomms2547
  4. W. Kwon, J.-M. Kim, and S.-W. Rhee, J. Mater. Chem. A 1 (2013) 3202-3215. https://doi.org/10.1039/C2TA00360K
  5. G.-H. An, and H.-J. Ahn, Electrochem. Solid State Lett. 3 (2014) M29-M32. https://doi.org/10.1149/2.0061407ssl
  6. D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M.J. Lazaro, and A.S. Arico, J. Power Sources 250 (2014) 242-249. https://doi.org/10.1016/j.jpowsour.2013.10.142
  7. P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, and Q. Qiao, Appl. Mater. Interfaces 2 (2010) 3572-3577. https://doi.org/10.1021/am100742s
  8. S.I. Noh, T.-Y. Seong, and H.-J. Ahn, J. Ceram. Process. Res. 13 (2012) 491-494.
  9. T.G. Ros, A.J. Dillen, J.W. Geus, and D.C. Koningsberger, Chem. Eur. J. 8 (2002) 1151-1162. https://doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#
  10. B.-S. Lee, S.-B. Son, K.-M. Park, G. Lee, K.H. Oh, S.-H. Lee, and W.-R. Yu, Appl. Mater. Interfaces 4 (2012) 6702-6710. https://doi.org/10.1021/am301873d
  11. T. Peng, W. Sun, X. Sun, N. Huang, Y. Liu, C. Bu, S. Guo, and X.-Z. Zhao, Nanoscale 5 (2013) 337-341. https://doi.org/10.1039/C2NR32536E
  12. F. Gong, H. Wang, and Z.-S. Wang, Phys. Chem. Chem. Phys. 13 (2011) 17676-17682. https://doi.org/10.1039/c1cp22542a