DOI QR코드

DOI QR Code

Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition

  • Received : 2015.01.08
  • Accepted : 2015.02.09
  • Published : 2015.05.31

Abstract

We demonstrate the surface treatment of graphene using an atmospheric pressure plasma jet (APPJ) system. The graphene was synthesized by a thermal chemical vapor deposition with methane gas. A Mo foil and a $SiO_2$ wafer covered by Ni films were employed to synthesize monolayer and mixed-layered graphene, respectively. The home-built APPJ system was ignited using nitrogen gas to functionalize the graphene surface, and we studied the effect of different treatment times and interdistance between the plasma jet and the graphene surface. After the APPJ treatment, the hydrophobic character of graphene surface changed to hydrophilic. We found that the change is due to the formation of functionalities such as hydroxyl and carboxyl groups. Furthermore, it is worth noting that the nitrogen plasma treatment induced charge doping on graphene, and the pyridinic nitrogen component in the X-ray photoelectron spectroscopy spectrum was significantly enhanced. We conclude that the atmospheric pressure plasma treatment enables controlling the graphene properties without introducing surface defects.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100 (2008) 016602. https://doi.org/10.1103/PhysRevLett.100.016602
  2. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3 (2008) 206. https://doi.org/10.1038/nnano.2008.58
  3. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385. https://doi.org/10.1126/science.1157996
  4. X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, F. Huang, Nanotechnology 23 (2012) 025704. https://doi.org/10.1088/0957-4484/23/2/025704
  5. K.A. Ritter, J.W. Lyding, Nat. Mater. 8 (2009) 235. https://doi.org/10.1038/nmat2378
  6. L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim, H. Zhou, C. Gutierrez, S.P. Chockalingam, C.J. Arguello, L. Palova, D. Nordlund, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, P. Kim, A. Pinczuk, G.W. Flynn, A.N. Pasupathy, Science 333 (2011) 999. https://doi.org/10.1126/science.1208759
  7. C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Adv. Mater. 23 (2011) 1020. https://doi.org/10.1002/adma.201004110
  8. X. Wang, H. Dai, Nat. Chem. 2 (2010) 661. https://doi.org/10.1038/nchem.719
  9. J. Campos-Delgado, Y.A. Kim, T. Hayashi, A.M. Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R.D. Shull, M.S. Dresselhaus, M. Terrones, Chem. Phys. Lett. 469 (2009) 177. https://doi.org/10.1016/j.cplett.2008.12.082
  10. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131 (2009) 15939. https://doi.org/10.1021/ja907098f
  11. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324 (2009) 768. https://doi.org/10.1126/science.1170335
  12. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, G. Zhang, Adv. Mater. 22 (2010) 4014. https://doi.org/10.1002/adma.201000618
  13. K.S. Hazra, J. Rafiee, M.A. Rafiee, A. Mathur, S.S. Roy, J. McLauhglin, N. Koratkar, D.S. Misra, Nanotechnology 22 (2011) 025704. https://doi.org/10.1088/0957-4484/22/2/025704
  14. T. Kato, L. Jiao, X. Wang, H. Wang, X. Li, L. Zhang, R. Hatakeyama, H. Dai, Small 7 (2011) 574. https://doi.org/10.1002/smll.201002146
  15. Y.P. Lin, Y. Ksari, J. Prakash, L. Giovanelli, J.C. Valmalette, J.M. Themlin, Carbon 73 (2014) 216. https://doi.org/10.1016/j.carbon.2014.02.057
  16. J.H. Moon, J.H. An, U. Sim, S.P. Cho, J.H. Kang, C. Chung, J.H. Seo, J.H. Lee, K.T. Nam, B.H. Hong, Adv. Mater. 26 (2014) 3501. https://doi.org/10.1002/adma.201306287
  17. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994, p. 46.
  18. C.A.J. Gils, S. Hofmann, B. Boekema, R. Brandenburg, P.J. Bruggeman, J. Phys. D Appl. Phys. 46 (2013) 175203. https://doi.org/10.1088/0022-3727/46/17/175203
  19. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. Woedtke, R. Brandenburg, T. Hagen, K. Weltmann, J. Phys. D Appl. Phys. 44 (2011) 013002. https://doi.org/10.1088/0022-3727/44/1/013002
  20. N. Geyter, A. Sarani, T. Jacobs, A. Nikiforov, T. Desmet, P. Dubruel, Plasma Chem. Plasma Process 33 (2013) 165. https://doi.org/10.1007/s11090-012-9419-3
  21. J.G. Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, L. Bautista, Appl. Surf. Sci. 305 (2014) 292. https://doi.org/10.1016/j.apsusc.2014.03.065
  22. S.W. Lee, C. Mattevi, M. Chhowalla, R.M. Sankaran, J. Phys. Chem. Lett. 3 (2012) 772. https://doi.org/10.1021/jz300080p
  23. H. Yu, D. Cheng, T.S. Williams, J. Severino, I.M. De Rosa, L. Carlson, R.F. Hicks, Carbon 57 (2013) 11. https://doi.org/10.1016/j.carbon.2013.01.010
  24. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457 (2009) 706. https://doi.org/10.1038/nature07719
  25. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  26. P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Appl. Phys. Lett. 91 (2007) 063124. https://doi.org/10.1063/1.2768624
  27. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473 (2009) 51. https://doi.org/10.1016/j.physrep.2009.02.003
  28. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 97 (2006) 266407. https://doi.org/10.1103/PhysRevLett.97.266407
  29. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91 (2007) 241907. https://doi.org/10.1063/1.2816262
  30. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98 (2007) 166802. https://doi.org/10.1103/PhysRevLett.98.166802
  31. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3 (2008) 210. https://doi.org/10.1038/nnano.2008.67
  32. Y. Lin, C. Lin, P. Chiu, Appl. Phys. Lett. 96 (2010) 133110. https://doi.org/10.1063/1.3368697

Cited by

  1. Plasma engineering of graphene vol.3, pp.2, 2015, https://doi.org/10.1063/1.4947188
  2. Surface modification of polyethylene/graphene composite using corona discharge vol.51, pp.10, 2018, https://doi.org/10.1088/1361-6463/aaa9d6
  3. Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi vol.2018, pp.2018, 2015, https://doi.org/10.17341/gazimmfd.416373
  4. Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection vol.9, pp.3, 2015, https://doi.org/10.5229/jecst.2018.9.3.229
  5. Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet vol.22, pp.15, 2020, https://doi.org/10.1039/c9cp06174f
  6. A Review of Strategies for the Synthesis of N-Doped Graphene-Like Materials vol.10, pp.11, 2015, https://doi.org/10.3390/nano10112286