DOI QR코드

DOI QR Code

Effects of Sintering Temperature on the Electric Properties of Mn-modified BiFeO3-BaTiO3 Bulk Ceramics

  • KIM, D.J. (School of Advanced Materials Engineering, Changwon National University) ;
  • LEE, M.H. (School of Advanced Materials Engineering, Changwon National University) ;
  • PARK, J.S. (School of Advanced Materials Engineering, Changwon National University) ;
  • KIM, M-H. (School of Advanced Materials Engineering, Changwon National University) ;
  • SONG, T.K. (School of Advanced Materials Engineering, Changwon National University) ;
  • KIM, W-J. (Department of Physics, Changwon National University) ;
  • JANG, K.W. (Department of Physics, Changwon National University) ;
  • KIM, S.S. (Department of Physics, Changwon National University) ;
  • DO, D. (Department of Advanced Materials Engineering, Keimyung University)
  • Received : 2014.04.28
  • Accepted : 2014.07.28
  • Published : 2015.04.15

Abstract

Mn-modified $0.67Bi_{1.05}FeO_3-0.33BaTiO_3$ ceramics were prepared via a solid-state reaction process by using a quenching method after a sintering process at various temperatures. We obtained ceramics with improved electric properties within a narrow sintering temperature range. At the optimized sintering temperature of $990^{\circ}C$, improved ferroelectric and piezoelectric properties were observed in the 1-mol% Mn-modified ceramic. The small-field and the large-field piezoelectric constants ($d_{33}$ and $d^*_{33}$) were 135 pC/N and 250 pm/V, respectively, and the leakage current density was about $2.4{\times}10^{-7}A/cm^2$. The remnant polarization ($P_r$) and the coercive field ($E_c$) were $29{\mu}C/cm^2$ and 28 kV/cm, respectively.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim and T. G. Park, Appl. Phys. Lett. 96, 202901 (2010). https://doi.org/10.1063/1.3428580
  2. Y. S. Sung, S. Baik, J. H. Lee, G. H. Ryu, D. Do, T. K. Song, M. H. Kim and W. J. Kim, Appl. Phys. Lett. 101, 012902 (2012). https://doi.org/10.1063/1.4732523
  3. B. Jaffe, W. Cook and H. Jaffe, Piezoelectric Ceramics (Academic, NY, 1971).
  4. S. Shao, J. Zhang, Z. Zhang, P. Zeng, M. Zhao, J. Li and C. Wang, J. Phys. D: Appl. Phys. 42, 189801 (2009). https://doi.org/10.1088/0022-3727/42/18/189801
  5. M. M. Kumar, A. Srinivas and S. V. Suryanarayana, J. Appl. Phys. 87, 855 (2000). https://doi.org/10.1063/1.371953
  6. S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x
  7. J. Li, J. Wang, M. Wutting, R. Ramesh, N. Wang and B. Ruette, Appl. Phys. Lett. 84, 5261 (2004). https://doi.org/10.1063/1.1764944
  8. V. R. Palkar, J. John and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002). https://doi.org/10.1063/1.1458695
  9. T. Zhao et al., Nature Mater. 5, 823 (2006). https://doi.org/10.1038/nmat1731
  10. Y-H. Lee, J-M. Wu and C-H. Lai, Appl. Phys. Lett. 88, 042903 (2006). https://doi.org/10.1063/1.2167793
  11. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan and J. Zhu, Appl. Phys. Lett. 89, 242914 (2006). https://doi.org/10.1063/1.2404942
  12. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang and W. Li, Mater. Res. Bull. 47, 4233 (2012). https://doi.org/10.1016/j.materresbull.2012.09.027
  13. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li and W. Zhou, J. Euro. Ceram. Soc. 33, 3023 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.029
  14. D. J. Kim et al., J. Electrom. 33, 37 (2014).
  15. M. H. Lee et al., J. Korean Phys. Soc. 57, 1901 (2010). https://doi.org/10.3938/jkps.57.1901
  16. D. Do, J. W. Kim, S. S. Kim, W-J. Kim, M. H. Lee and T. K. Song, J. Korean Phys. Soc. 57, 1875 (2010). https://doi.org/10.3938/jkps.57.1875
  17. M. H. Lee et al., Ferroelectrics 452, 7 (2013). https://doi.org/10.1080/00150193.2013.839294
  18. S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen and N. B. Ming, Appl. Phys. Lett. 87, 262907 (2005). https://doi.org/10.1063/1.2147719
  19. T. Rojac, M. Kosec, B. Budic, N. Setter and D. Damjanovic, J. Appl. Phys. 108, 074107 (2010). https://doi.org/10.1063/1.3490249
  20. Y. J. Lee, J. S. Kim, S. H. Han, H.-W. Kang, H-G. Lee and C. I. Cheon, J. Korean Phys. Soc. 61, 947 (2012). https://doi.org/10.3938/jkps.61.947
  21. C. A. Randall, N. Kim, J-P. Kucera, W. Cao and T. R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998).
  22. Y. K. Wang and T. Y. Tseng, Appl. Phys. Lett. 80, 3790 (2002). https://doi.org/10.1063/1.1480099
  23. Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu and D. Lin, J. Am. Ceram. Soc. 97, 1809 (2014). https://doi.org/10.1111/jace.12827
  24. S. K. Singh, H. Ishiwara, K. Sato and K. Maruyama, J. Appl. Phys. 102, 094109 (2007). https://doi.org/10.1063/1.2812594
  25. M. H. Lee et al., J. Korean Phys. Soc. 61, 1070 (2012). https://doi.org/10.3938/jkps.61.1070
  26. R. Mitsui, I. Fujii, K. Nakashima, N. Kumada, Y. Kuroiwa and S. Wada, Ceramics International 39, S695 (2013). https://doi.org/10.1016/j.ceramint.2012.10.164
  27. M. H. Lee et al., Curr. Appl. Phys. 11, S189 (2011). https://doi.org/10.1016/j.cap.2011.03.024
  28. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li and H.Wang, J. Euro. Ceram. Soc. 33, 1177 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.019

Cited by

  1. Effects of Sintering Atmosphere on Piezoelectric Properties of 0.75BF-0.25BT Ceramic vol.53, pp.2, 2015, https://doi.org/10.4191/kcers.2016.53.2.162
  2. Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3-0.25BaTiO3 ceramics vol.109, pp.20, 2015, https://doi.org/10.1063/1.4967742
  3. Microstructural and Electrical Properties of Sn-Modified BaTiO3 Lead-Free Ceramics by Two-Step Sintering Method vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/9048062
  4. Optimization of multiferroic properties in BiFeO3-BaTiO3-based ceramics by tuning oxygen octahedral distortion vol.55, pp.7, 2015, https://doi.org/10.1007/s10853-019-04244-7
  5. Enhanced Electromechanical Properties of 0.65Bi 1.05 FeO 3 -0.35BaTiO 3 Ceramics through Optimizing Sintering Conditions vol.217, pp.12, 2015, https://doi.org/10.1002/pssa.201900970
  6. Surface structure and quenching effects in BiFeO 3 ‐BaTiO 3 ceramics vol.105, pp.2, 2015, https://doi.org/10.1111/jace.18188