DOI QR코드

DOI QR Code

Sea, wind, or bird: Origin of Fagus multinervis (Fagaceae) inferred from chloroplast DNA sequences

엽록체 염기서열을 통한 너도밤나무(너도밤나무과)의 기원 추론

  • Received : 2015.07.08
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

To elucidate the origin and patterns of establishment of insular plants on Ulleungdo Island, maternally inherited chloroplast DNA, which is useful for tracing seed movements, was used. Fagus multinervis, an endemic species that dominated broadleaf deciduous forests on Ulleungdo Island, is an excellent model for such a study. To understand the diversity and spatial distribution of the chloroplast haplotypes of F. multinervis, nucleotide sequences of the psbA-trnH region were determined from 144 individuals sampled throughout the island. Results of a phylogenetic analysis of the region with close relatives of F. multinervis suggest that F. multinervis is sister to a clade of F. japonica and F. engleriana. No haplotype variation was found within F. multinervis. This remarkably low cpDNA haplotype diversity is in contrast to the findings of previous allozyme studies of F. multinervis populations that showed high genetic diversity on Ulleungdo Island. Repeated colonization during the early stage of establishment via birds that migrated from a source area where the F. multinervis cpDNA haplotype was geographically structured may have resulted in the observed pattern of haplotype diversity. Alternatively, long-distance dispersal of seeds of the progenitor of F. multinervis via birds or typhoons to Ulleungdo may have been a single event, whereas the immigration of pollen from the mainland likely occurred frequently. Comparative phylogeographic studies of other species endemic to Ulleungdo Island and their close relatives on the neighboring mainland are necessary for a more complete understanding of the evolution of the island's native species.

울릉도의 낙엽활엽수림에 우점하고 있는 너도밤나무를 대상으로 엽록체 반수체형(haplotype)의 다양성과 공간적 분포를 파악하기 위해 울릉도 전역에서 채집한 총 144개체로부터 psbA-trnH 구간의 염기서열을 결정하였다. 너도밤나무의 근연종을 포함하여 계통분석을 수행한 결과, 너도밤나무의 엽록체 반수체형은 일본산 F. japonica와 중국산 F. engleriana 분계조와 자매관계를 이루는 것으로 나타났다. 또한, 분석한 모든 너도밤나무의 개체들은 동일한 염기서열을 갖고 있는 것으로 나타나, 엽록체 반수체형의 다양성은 매우 낮은 것으로 판명되었다. 이러한 결과는 동위효소 분석에 근거한 유전자 다양성이 매우 높다는 기존 연구 결과와 대비되는 것으로서, 너도밤나무는 핵 유전자의 다양성은 높으나 엽록체 유전자의 다양성은 낮은 것으로 판단되며, 이것은 두 가지 가설로 설명할 수 있다. 하나는 너도밤나무의 조상이 울릉도로 이주하여 정착할 초기 단계에서 엽록체 반수체형이 지역적인 구조를 갖는 조상 모집단으로부터 종자가 지속적으로 유입된 결과로 해석할 수 있다. 다른 하나는 육지의 조상 모집단으로부터 새 또는 태풍에 의해 소수의 종자가 유입되어 정착한 후, 바람에 의해 조상 모집단의 화분이 지속적으로 유입된 결과인 것으로 추론할 수 있다. 울릉도 내의 대양한 고유 자생식물의 기원을 규명하는 데 있어서 모계유전을 함으로 인해 종자의 이동을 추적할 수 있는 엽록체 DNA에 근거한 비교계통지리학적 연구가 필요한 것으로 사료된다.

Keywords

References

  1. Cannon, C. H. and P. S. Manos. 2003. Phylogeography of the Southeast Asian stone oaks (Lithocarpus). Journal of Biogeography 30: 211-226. https://doi.org/10.1046/j.1365-2699.2003.00829.x
  2. Chung, H. G., J. M. Chung and M. G. Chung. 1998. Allozyme variation in six flowering plant species characterizing Ullung Island, Korea. Journal of Japanese Botany 73: 241-247.
  3. Corriveau, J. L. and A. W. Coleman. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany 75: 1443-1458. https://doi.org/10.2307/2444695
  4. Denk, T., G. W. Grimm and V. Hemleben. 2005. Patterns of molecular and morphological differentiation in Fagus (Fagaceae): Phylogenetic implications. American Journal of Botany 92: 1006-1016. https://doi.org/10.3732/ajb.92.6.1006
  5. Dumolin, S., B. Demesure and R. J. Petit. 1995. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91: 1253-1256.
  6. Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  7. Felsenstein, J. 1985 Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  8. Fujii, N., N. Tomaru, K. Okuyama, T. Koike, T. Mikami and K. Ueda. 2002. Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Systematics and Evolution 232: 21-33. https://doi.org/10.1007/s006060200024
  9. Hamilton, M. B. 1999. Tropical tree gene flow and seed dispersal. Nature 401: 129-130. https://doi.org/10.1038/43597
  10. Hatziskakis, S., A. C. Papageorgiou, O. Gailing and R. Finkeldey. 2009. High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.). Plant Biology 11: 425-433. https://doi.org/10.1111/j.1438-8677.2008.00111.x
  11. Hukusima, T., T. Matsui, T. Nishio, S. Pignatti, L. Yang, S. Y. Lu, M.-H. Kim, M. Yoshikawa, H. Honma and Y. Wang. 2013. Phytosociology of the beech (Fagus) forest in East Asia, Springer, Heidelberg.
  12. Johnson, W. C. and C. S. Adkisson. 1985. Dispersal of beech nuts by Blue Jays in fragmented landscapes. American Midland Naturalist 113: 319-324. https://doi.org/10.2307/2425577
  13. Kano, M., J. Yokoyama, Y. Suyama, M. Ohyama, T. Itoh and M. Suzuki. 2004. Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. Journal of Plant Research 117: 311-317.
  14. Kim, Y. K. 1985. Petrology of Ulreung volcanic island, Korea, part 1, geology. Journal of Mineralogy, Petrology and Economic Geology 80: 128-135.
  15. Kim, J.-M., J. P. Kennett, B.-K. Park, D. C. Kim, G. Y. Kim and E. B. Roark. 2000. Paleoceanographic change during the last deglaciation, East Sea of Korea. Paleoceanography 15: 254-266. https://doi.org/10.1029/1999PA000393
  16. McLachlan, J. S., J. S. Clark and P. S. Manos. 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86: 2088-2098. https://doi.org/10.1890/04-1036
  17. Oh, S.-H., L. Chen, S. Kim, Y.-D. Kim and H. Shin. 2010. Phylogenetic relationship of Physocarpus insularis (Rosaceae) endemic on Ulleung Island: Implications for conservation biology. Journal of Plant Biology 53: 94-105. https://doi.org/10.1007/s12374-009-9093-z
  18. Ohkawa, T., K. Kitamura, H. Takasu and S. Kawano. 2006. Genetic variation in Fagus multinervis Nakai (Fagaceae), a beech species endemic to Ullung Island, South Korea. Plant Species Biology 21: 135-145. https://doi.org/10.1111/j.1442-1984.2006.00159.x
  19. Okaura, T. and K. Harada. 2002. Phylogeographical structure revealed by chloroplast DNA variation in Japanese Beech (Fagus crenata Blume). Heredity 88: 322-329. https://doi.org/10.1038/sj.hdy.6800048
  20. Paik, I.-S., H.-C Kang, H.-J. Kim, H.-I. Lee, K. Kim and E.-K. Jeong. 2010. The Geumgwangdong Formation of the Janggi Group, Pohang area: Stratigraphy, occurrences, and fossil leaf deposits. Journal of the Geological Society of Korea 46: 535-552.
  21. Paik, I.-S., H.-J. Kim, K. Kim, E.-K. Jeong, H.-C. Kang, H.-I. Lee and K. Uemura. 2012. Leaf beds in the Early Miocene lacustrine deposits of the Geumgwangdong Formation, Korea: Occurrence, plant-insect interaction records, taphonomy and palaeoenvironmental implications. Review of Palaeobotany and Palynology 170: 1-14. https://doi.org/10.1016/j.revpalbo.2011.10.011
  22. Park, C.-W., S.-H. Oh and H. Shin. 1993. Reexamination of vascular plants in Ullung Island, Korea II: taxonomic identity of Acer takesimense Nakai (Aceraceae). Korean Journal of Plant Taxonomy 23: 217-231.
  23. Perea, R., A. S. Miguel and L. Gil. 2007. Flying vs. climbing: Factors controlling arboreal seed removal in oak-beech forests. Forest Ecology and Management 262: 1251-1257.
  24. Petit, R.J., U. Csaikl, S. Bordaics, K. Burg, E. Coart, J. Cottrell, B. van Dam, J. D. Deans, I. Glaz, S. Dumolin-Lapelgue, S. Fineschi, R. Finkeldey, A. Gillies, P. G. Goicoechea, J. S. Jensen, A. Konig, A. J. Lowe, S. F. Madsen, G. Maityais, R. C. Munro, M. Olalde, M-H. Pemonge, F. Popescu, D. Slade, H. Tabbener, D. Taurchini, B. Ziegenhagen and A. Kremer. 2002. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 156: 5-26. https://doi.org/10.1016/S0378-1127(01)00645-4
  25. Pfosser, M. F., J. Guzy-Wrobelska, B.-Y. Sun, T. F. Stuessy, T. Sugawara and N. Fujii. 2002. The origin of species of Acer (Sapindaceae) endemic to Ullung Island, Korea. Systematic Botany 27: 351-367.
  26. Pfosser, M. F., G. Jakubowsky, P. M. Schluter, T. Fer, H. Kato, T. F. Stuessy and B.-Y. Sun. 2006. Evolution of Dystaenia takesimana (Apiaceae), endemic to Ullung Island, Korea. Plant Systematics and Evolution 256: 159-170.
  27. Sang, T., D. J. Crawford and T. F. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136. https://doi.org/10.2307/2446155
  28. Shen, C. F. 1992. A monograph of the genus Fagus Tourn. ex L. (Fagaceae). Ph.D. dissertation. City University of New York, New York.
  29. Shin, H., S.-H. Oh, Y. Lim, C.-W. Hyun, S.-H. Cho, Y.-I. Kim and Y.-D. Kim. 2014. Molecular evidence for hybrid origin of Aster chusanensis, an endemic species of Ulleungdo, Korea. Journal of Plant Biology 57: 174-185. https://doi.org/10.1007/s12374-014-0135-9
  30. Smith, S. A. and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86-89. https://doi.org/10.1126/science.1163197
  31. Sun, B.-Y. and T. F. Stuessy. 1998. Preliminary observations on the evolution of endemic angiosperms of Ullung Island, Korea. In Evolution and speciation of island plants. Stuessy, T. F. and M. Ono (eds.), Cambridge University Press, Cambridge, Pp. 181-202.
  32. Sun, B.-Y., H. Shin, J.-O. Hyun, Y.-D. Kim and S.-H. Oh. 2014. Vascular plants of Dokdo and Ulleungdo islands in Korea. National Institute of Biological Resources, Incheon.
  33. Swofford, D. L. 2002. PAUP* Phylogenetic Analysis Using Parsimony (* and other methods), version 4.0. Sinauer Associates, Sunderland.
  34. Weiss, H., B.-Y. Sun, T. F. Stuessy, C. H. Kim, H. Kato and M. Wakabayashi. 2002. Karyology of plant species endemic to Ullung Island (Korea) and selected relatives in peninsular Korea and Japan. Botanical Journal of the Linnean Society 138: 93-105. https://doi.org/10.1046/j.1095-8339.2002.00013.x
  35. Whittemore, A. T. and B. A. Schaal. 1991. Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences USA 88: 2540-2544. https://doi.org/10.1073/pnas.88.6.2540
  36. Woo, H.-K, J.-H. Kim, S.-H. Yeau and N. S. Lee. 2002. Morphological and isozyme divergence in Korean Hepatica sensu stricto (Ranunculaceae). Plant Systematics and Evolution 236: 33-44. https://doi.org/10.1007/s00606-002-0212-2

Cited by

  1. Chloroplast DNA assessment of anagenetic speciation in Rubus takesimensis (Rosaceae) on Ulleung Island, Korea vol.60, pp.2, 2017, https://doi.org/10.1007/s12374-016-0421-9
  2. A checklist of endemic plants on the Korean Peninsula vol.47, pp.3, 2017, https://doi.org/10.11110/kjpt.2017.47.3.264
  3. The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana) vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7026
  4. A second complete chloroplast genome sequence of Fagus multinervis Nakai (Fagaceae): intraspecific variations on chloroplast genome vol.5, pp.2, 2015, https://doi.org/10.1080/23802359.2020.1752837
  5. Plastome Characterization and Phylogenomics of East Asian Beeches with a Special Emphasis on Fagus multinervis on Ulleung Island, Korea vol.11, pp.11, 2015, https://doi.org/10.3390/genes11111338
  6. Insights from Chloroplast DNA into the Progenitor-Derivative Relationship Between Campanula punctata and C. takesimana (Campanulaceae) in Korea vol.63, pp.6, 2020, https://doi.org/10.1007/s12374-020-09281-3
  7. A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea vol.51, pp.1, 2021, https://doi.org/10.11110/kjpt.2021.51.1.109