DOI QR코드

DOI QR Code

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis

분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성

  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Woo Hyun (Department of Chemical Engineering, Kongju National University)
  • 정경열 (공주대학교 화학공학부) ;
  • 김우현 (공주대학교 화학공학부)
  • Received : 2014.12.09
  • Accepted : 2014.12.31
  • Published : 2015.10.01

Abstract

$Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

$Ho^{3+}$가 도핑된 $SrAl_2O_4$ 상향전환 형광체 분말을 분무열분해법으로 제조하고 활성제의 농도, 후 열처리 온도 변화에 따른 결정학적 구조와 발광 특성을 조사하였다. 또한 유기 첨가제 사용에 따른 형광체의 결정구조, 표면적 및 휘도 변화를 조사하였다. $SrAl_2O_4:Ho^{3+}$$Ho^{3+}$$^5F_4/^5S_2{\rightarrow}^5I_8$ 전이에 기인한 강한 녹색 발광을 보였다. 가장 높은 발광 강도를 보이는 $Ho^{3+}$ 농도는 0.1%였고, 그 이상의 농도에서는 활성 이온간 쌍극자-쌍극자 상호 작용에 의에 농도소강이 일어나 발광 휘도는 급격히 감소하였다. 여기 광원의 전력 세기에 따른 발광 휘도 변화 관찰로부터 $SrAl_2O_4:Ho^{3+}$의 녹색 발광은 2광자가 관여된 바닥상태흡수-여기상태흡수 과정을 통해 효율적으로 일어남이 확인되었다. 합성된 분말의 주상은 단사정계이고 일부 육방정계 상이 존재하였다. 후 열처리 온도를 $1000^{\circ}C$에서 $1350^{\circ}C$로 증가시킴에 따라 $SrAl_2O_4:Ho^{3+}$는 육방정계 상이 줄어 들면서 단상정계의 결정성이 향상되었다. 그러나 $1350^{\circ}C$에서도 일부 육방정계 상은 존재하였다. 구연산(CA)과 에틸렌 글리콜(EG)을 첨가해준 분무 용액으로부터 제조한 경우, 육방정계 상이 없는 순수한 단사정계 상으로 향상된 결정성을 가지는 $SrAl_2O_4:Ho^{3+}$가 제조되었다. 또한 유기 첨가제와 함께 N,N-Dimethylformamide(DMF)를 분무용액에 넣어 줌으로써 형광체의 표면적을 크게 감소시킬 수 있었다. 그 결과 CA/EG/DMF를 넣고 제조한 $SrAl_2O_4:Ho^{3+}$ 형광체는 유기 첨가물 없이 제조한 형광체에 비해 발광 휘도가 약 168% 향상되었다. 이러한 휘도 증대는 $SrAl_2O_4:Ho^{3+}$ 형광체의 결정상이 순수해졌고, 결정성 증대와 표면 결함을 최소화시킨 결과라고 결론지었다.

Keywords

References

  1. Hasse, M. and Schafer, H., "Upconverting Nanoparticles," Angw. Chem. Int. Ed., 50, 5808-5829(2011). https://doi.org/10.1002/anie.201005159
  2. Li, X., Zhang, F. and Zhao D., "Highly Efficient Lanthanide Upconverting Nanomaterials: Progress and challenges," Nano Today, 8, 643-676(2013). https://doi.org/10.1016/j.nantod.2013.11.003
  3. DaCosta, M. V., Doughan, S., Han, Y. and Krull, U. J., "Lanthanide Upconversion Nanoparticles and Application in Bioassays and Bioimaging: A Review," Anal. Chim. Acta, 832, 1-33(2014). https://doi.org/10.1016/j.aca.2014.04.030
  4. Sun, Q.-C., Mundoor, H., Ribot, J. C., Singh, V., Smalyukh, I. I. and Nagpal, P., "Plasmon-enhanced Energy Transfer for Improved Upconversion of Infrared Radiation in Doped-lanthanide Nanocrystals," Nano Lett., 14, 101-106(2014). https://doi.org/10.1021/nl403383w
  5. Auzel F., "Upconversion and Anti-stokes Processes with f and d ions in Solids," Chem. Rev., 104, 139-173(2004). https://doi.org/10.1021/cr020357g
  6. Jiao, Y., Gao, X., Lu, J., Chen, Y., He, W., Chen, X., Li, X. and Li, R., "Hydrothermal Synthesis of the Intense Green Photoluminescence of Hexagonal Phase $NaYF_4$:$Yb^{3+}$/$Er^{3+}$ Microcrystals," J. Alloys Comp., 549, 245-253(2013). https://doi.org/10.1016/j.jallcom.2012.09.056
  7. Zeng, J.-H., Su, J., Li, Z.-H., Yan, R.-X. and Li, Y.-D., "Synthesis and Upconversion Luminescence of Hexagonal-phase $NaYF_4$:Yb,$Er^{3+}$ Phosphors of Controlled Size and Morphology," Adv. Mater., 17, 2119-2123(2005). https://doi.org/10.1002/adma.200402046
  8. Wang, Z., Gu, F., Wang, Z. and Han, D., "Solvothermal Synthesis of $CeO_2$:Er/Yb Nanorods and Upconversion Luminescence Charac-terization," Mater. Res. Bull., 53, 141-144(2014). https://doi.org/10.1016/j.materresbull.2014.02.003
  9. Joshi, C., Rai, A., Dwivedi, Y. and Rai, S. B., "Color Tunable Emission from $(Gd_xY_{1-x})_2O_3$:$Er^{3+}$,$Yb^{3+}$ Phosphor Prepared by Combustion Method," J. Lumin., 132, 806-810(2012). https://doi.org/10.1016/j.jlumin.2011.11.019
  10. Singh, V., Rai, V. K., Al-Shamery, K., Haase, M. and Kim S. H., "NIR to Visible Frequency Upconversion in $Er^{3+}$ and $Yb^{3+}$ Codoped $ZrO_2$ Phosphor," Appl. Phys. A, 113, 747-753(2013). https://doi.org/10.1007/s00339-013-7583-9
  11. Das, S., Reddy, A. A. and Prakash, G. V., "Strong Green Upconversion Emission from $Er^{3+}$-$Yb^{3+}$ co-doped $KCaBO_3$ Phosphor," Chem. Phys. Lett., 504, 206-210(2011). https://doi.org/10.1016/j.cplett.2011.02.004
  12. Shin, H., Ullah, S. and Chung K., "Effect of Nominal Substitution of $Dy^{3+}$ for Host Cations in $SrAl_2O_4$:$Eu^{2+}$ Phosphor on Phase Evolution and Long Afterglow Luminescence," J. Alloys Comp., 544, 181-187(2012). https://doi.org/10.1016/j.jallcom.2012.07.087
  13. Clabau, F., Rocquefelte, X., Jobic, S., Deniard, P., Whangbo, M.-H., Garcia, A. and Mercier, T. L., "Mechanism of Phosphorescence Appropriate for the Long-lasting Phosphors $Eu^{2+}$-doped $SrAl_2O_4$ with Codopants $Dy^{3+}$ and $B^{3+}$," Chem. Mater., 17, 3904-3912(2005). https://doi.org/10.1021/cm050763r
  14. Chen, I.-C. and Chen, T.-M., "Sol-gel Synthesis and the Effect of Boron Addition on the Phosphorescent Properties of $SrAl_2O_4$: $Eu^{2+}$,$Dy^ {3+}$ Phosphors," J. Mater. Res., 16, 644-651(2001). https://doi.org/10.1557/JMR.2001.0122
  15. Rakov, N. G. and Maciel, G. S., "Infrared-to-visible Frequency Upconversion in $SrAl_2O_4$ Powders Containing $Er^{3+}$ and $Yb^{3+}$," Appl. Phys. B, 98, 435-438(2010).
  16. Kim, J. H. and Jung, K. Y., "Preparation and Luminescence Characterization of Find-sized $LaSr_2AlO_5$:Ce Phosphor Prepared by Spray Pyrolysis," J. Lumin., 131, 1487-1491(2011). https://doi.org/10.1016/j.jlumin.2011.03.054
  17. Cho, J. S., Lee, S. M., Jung, K. Y. and Kang, Y. C., "Large-scale Production of Fine-sized $Zn_2SiO_4$:Mn Phosphor Microspheres with a Dense Structure and Good Photoluminescence Properties by a Spray-drying Process," RSC Adv., 4, 43606-43611(2014). https://doi.org/10.1039/C4RA06903J
  18. Jung, K. Y., Lee, H. W., Kang, Y. C., Park, S. B. and Yang, Y. S., "Luminescent Properties of (Ba, Sr)$MgAl_{10}O_{17}$:Mn,Eu Green Phosphor Prepared by Spray Pyrolysis Under VUV Excitation," Chem. Mater., 17, 2729-2734(2005). https://doi.org/10.1021/cm050074f
  19. Jung, K. Y., Lee, H. W. and Jung, H. K., "Luminescent Properties of (Sr,Zn)$Al_2O_4$:$Eu^{2+}$,$B^{3+}$ Particles as a Potential Green Phosphor for UV LEDs," Chem. Mater., 18, 2249-2255(2006). https://doi.org/10.1021/cm060003w
  20. Jung, K. Y., Lee, D. Y., Kang, Y. C. and Park, S. B., "Size-dependent Luminescent Properties of Hollow and Dense Ba$MgAl_{10}O_{17}$:Eu Blue Phosphor Particles Prepared by Spray Pyrolysis," Korean J. Chem. Eng., 21, 1072-1080(2004). https://doi.org/10.1007/BF02705595
  21. Kim, M. N. and Jung, K. Y., "Synthesis and Luminescence Enhancement of Strontium Aluminate Green Phosphor Via Spray Pyrolysis," Korean Chem. Eng. Res., 49, 594-599(2011). https://doi.org/10.9713/kcer.2011.49.5.594
  22. Henderson, C. M. B. and Taylor, D., "The structural Behavior of the Nepheline Family: (1) Sr and Ba Aluminate ($Mal_2O_4$)," Miner. Mag., 45, 111-127(1982). https://doi.org/10.1180/minmag.1982.045.337.13
  23. Wang, D., Yin Q., Li, Y. and Wang, M., "Concentration Quenching of $Eu^{2+}$ in $SrO6Al_2O_3$:$Eu^{2+}$ Phosphor," J. Mater. Sci., 37, 381-393(2002). https://doi.org/10.1023/A:1013620917213
  24. Jung, K. Y. and Jung, H.-K., "Luminescence Optimization of Eudoped $LnAl_3(BO_3)_4$ (Ln=Y, Gd) Red Phosphor Using Spray Pyrolysis," J. Lumin., 130, 1970-1974(2010). https://doi.org/10.1016/j.jlumin.2010.05.014
  25. Wang, D., Yin, Q., Li, Y. and Wang, M., "Concentration Quenching of $Eu^{2+}$ in $SrOAl_2O_3$:$Eu^{2+}$ Phosphor," J. Lumin., 97, 1-6(2002). https://doi.org/10.1016/S0022-2313(01)00413-6

Cited by

  1. Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.457
  2. Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process vol.25, pp.1, 2018, https://doi.org/10.4150/KPMI.2018.25.1.12
  3. 응집된 Y2O3:Eu Red 형광체의 나노분산 및 나노졸의 형광특성 vol.27, pp.2, 2017, https://doi.org/10.3740/mrsk.2017.27.2.100
  4. 주형법으로 제조된 Gd2O3:Eu3+ 적색 형광체의 나노입자 분산 및 형상제어 vol.27, pp.10, 2015, https://doi.org/10.3740/mrsk.2017.27.10.534
  5. 삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황 vol.55, pp.6, 2015, https://doi.org/10.9713/kcer.2017.55.6.731
  6. Enhanced Energy-Transfer Properties in Core-Shell Photoluminescent Nanoparticles Using Mesoporous SiO2 Intermediate Layers vol.58, pp.2, 2020, https://doi.org/10.3365/kjmm.2020.58.2.137