DOI QR코드

DOI QR Code

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Park, Hyun Soo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Ahn, Tae Seok (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Kim, Hyun Jung (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Ha, Ki-Tae (Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine) ;
  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
  • Received : 2014.12.08
  • Accepted : 2015.02.25
  • Published : 2015.10.15

Abstract

Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Keywords

References

  1. Nah SY. Ginseng: recent advances and trends. Korean J Ginseng Sci 1997;21:1-12.
  2. Kim HS, Parajuli SP, Yeum CH, Park JS, Jeong HS, So I, Kim KW, Jun JY, Choi S. Effects of ginseng total saponins on pacemaker currents of interstitial cells of Cajal from the small intestine of mice. Biol Pharm Bull 2007;30:2037-42. https://doi.org/10.1248/bpb.30.2037
  3. Han S, Kim JS, Jung BK, Han SE, Nam JH, Kwon YK, Nah SY, Kim BJ. Effects of ginsenoside on pacemaker potentials of cultured interstitial cells of Cajal clusters from the small intestine of mice. Mol Cells 2012;33:243-9. https://doi.org/10.1007/s10059-012-2204-6
  4. Saito H, Tsuchiya M, Naka S, Takagi K. Effects of Panax ginseng root on conditioned avoidance response in rats. Jpn J Pharmacol 1977;27:509-16. https://doi.org/10.1254/jjp.27.509
  5. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  6. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  7. Furukawa Y, Shiga Y, Hanyu N, Hashimoto Y, Mukai H, Nishikawa K, Nakamura T. Effect of Chinese herbal medicine on gastrointestinal motility and bowel obstruction. Jpn J Gastroenterol Surg 1995;28:956-60. https://doi.org/10.5833/jjgs.28.956
  8. Hashimoto K, Satoh K, Kase Y, Ishige A, Kubo M, Sasaki H, Nishikawa S, Kurosawa S, Yakabi K, Nakamura T. Modulatory effect of aliphatic acid amides from Zanthoxylum piperitum on isolated gastrointestinal tract. Planta Med 2001;67:179-81. https://doi.org/10.1055/s-2001-11513
  9. Murata P, Hayakawa T, Satoh K, Kase Y, Ishige A, Sasaki H. Effects of Dai-kenchu- to, a herbal medicine, on uterine and intestinal motility. Phytother Res 2001;15:302-6. https://doi.org/10.1002/ptr.745
  10. Sukrittanon S, Watanapa WB, Ruamyod K. Ginsenoside Re enhances small-conductance Ca(2+)-activated K(+) current in human coronary artery endothelial cells. Life Sci 2014;115:15-21. https://doi.org/10.1016/j.lfs.2014.09.007
  11. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 2014;38:89-96. https://doi.org/10.1016/j.jgr.2013.10.001
  12. Su X, Pei Z, Hu S. Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 2014;20:283-9. https://doi.org/10.1016/j.intimp.2014.03.008
  13. Jang HJ, Han IH, Kim YJ, Yamabe N, Lee D, Hwang GS, Oh M, Choi KC, Kim SN, Ham J, et al. Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells. J Agric Food Chem 2014;62:2830-6. https://doi.org/10.1021/jf5000776
  14. Huizinga JD, thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995;373:347-9. https://doi.org/10.1038/373347a0
  15. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996;111:492-515. https://doi.org/10.1053/gast.1996.v111.pm8690216
  16. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW. Melastatin-type transient receptor potential channel 7 Is required for intestinal pacemaking activity. Gastroenterology 2005;129:1504-17. https://doi.org/10.1053/j.gastro.2005.08.016
  17. Koh SD, Jun JY, Kim TW, Sanders KM. A Ca2+-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol 2002;540:803-14. https://doi.org/10.1113/jphysiol.2001.014639
  18. Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J Smooth Muscle Res 2006;42:1-7. https://doi.org/10.1540/jsmr.42.1
  19. Huizinga JD, Zhu Y, Ye J, Molleman A. High conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 2002;123:1627-36. https://doi.org/10.1053/gast.2002.36549
  20. Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. A Ca2+-activated Cl-conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 2009;587:4905-18. https://doi.org/10.1113/jphysiol.2009.176206
  21. Zhu Y, Mucci A, Huizinga JD. Inwardly rectifying chloride channel activity in intestinal pacemaker cells. Am J Physiol Gastrointest Liver Physiol 2005;288:G809-21. https://doi.org/10.1152/ajpgi.00301.2004
  22. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang J, Kim HJ, Park CW, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33:151-62. https://doi.org/10.1007/s10059-012-2216-z
  23. Pyo MK, Choi SH, Hwang SH, Shin th, Lee BH, Lee SM, Lim YH, Kim DH, Nah SY. Novel glycolipoproteins from ginseng. J Ginseng Res 2011;35:92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  24. Kim BJ, Nam JH, Kim KH, Joo M, Ha TS, Weon KY, Choi S, Jun JY, Park EJ, Wie J, et al. Characteristics of gintonin-mediated membrane depolarization of pacemaker activity in cultured interstitial cells of Cajal. Cell Physiol Biochem 2014;34:873-90. https://doi.org/10.1159/000366306
  25. Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 1998;513:203-13. https://doi.org/10.1111/j.1469-7793.1998.203by.x
  26. Kim BJ, Lee JH, Jun JY, Chang IY, So I, Kim KW. Vasoactive intestinal poly-peptide inhibits pacemaker activity via the nitric oxide-cGMP-protein kinase G pathway in the interstitial cells of Cajal of the murine small intestine. Mol Cells 2006;21:337-42. https://doi.org/10.1016/j.molcel.2006.01.011
  27. Komori S, Kawai M, Takewaki T, Ohashi H. GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea pig ileal muscle. J Physiol 1992;450:105-26. https://doi.org/10.1113/jphysiol.1992.sp019118
  28. Ogata R, Inoue Y, Nakano H, Ito Y, Kitamura K. Oestradiol-induced relaxation of rabbit basilar artery by inhibition of voltage-dependent Ca channels through GTP-binding protein. Br J Pharmacol 1996;117:351-9. https://doi.org/10.1111/j.1476-5381.1996.tb15198.x
  29. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42.
  30. Ng WY, Yang MS. Effects of ginsenosides Re and Rg3 on intracellular redox state and cell proliferation in C6 glioma cells. Chin Med 2008;3:1-8. https://doi.org/10.1186/1749-8546-3-1
  31. Song X, Chen J, Sakwiwatkul K, Li R, Hu S. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. Int Immunopharmacol 2010;10:351-6. https://doi.org/10.1016/j.intimp.2009.12.009
  32. Christensen LP, Jensen M. Biomass and content of ginsenosides and poly-acetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds. J Nat Med 2009;63:159-68. https://doi.org/10.1007/s11418-008-0307-3
  33. Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsenoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J Med Invest 2007;54:381-4. https://doi.org/10.2152/jmi.54.381
  34. Daigo Y, Takayama I, Ponder BA, Caldas C, Ward SM, Sanders KM, Fujino MA. Differential gene expression profile in the small intestines of mice lacking pacemaker interstitial cells of Cajal. BMC Gastroenterol 2003;3:1-6. https://doi.org/10.1186/1471-230X-3-1
  35. Yamazawa T, Iino M. Simultaneous imaging of Ca2+ signals in interstitial cells of Cajal and longitudinal smooth muscle cells during rhythmic activity in mouse ileum. J Physiol 2002;538:823-35. https://doi.org/10.1113/jphysiol.2001.013045
  36. Cretoiu SM, Simionescu AA, Caravia L, Curici A, Cretoiu D, Popescu LM. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in human non-pregnant myometrium. Acta Physiol Hung 2011;98:329-38. https://doi.org/10.1556/APhysiol.98.2011.3.10
  37. Xiong Y, Chen D, Lv B, Liu F, Yao Q, Tang Z, Lin Y. Effects of ginsenoside Re on rat jejunal contractility. J Nat Med 2014;68:530-8. https://doi.org/10.1007/s11418-014-0831-2
  38. Wu TJ, Lee LY, Yeh CN, Wu PY, Chao TC, Hwang TL, Jan YY, Chen MF. Surgical treatment and prognostic analysis for gastrointestinal stromal tumors (GISTs) of the small intestine: before the era of imatinib mesylate. BMC Gastroenterol 2006;6:1-8. https://doi.org/10.1186/1471-230X-6-1
  39. Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012;9:633-45. https://doi.org/10.1038/nrgastro.2012.168
  40. Kim BJ, Nah SY, Jeon JH, So I, Kim SJ. Transient receptor potential melastatin 7 channels are involved in ginsenoside Rg3-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol Toxicol 2011;109:233-9. https://doi.org/10.1111/j.1742-7843.2011.00706.x
  41. Kim BJ. The role of ginseng total saponin in transient receptor potential melastatin type 7 channels. Animal Cells Syst (Seoul) 2012;16:376-84. https://doi.org/10.1080/19768354.2012.680495

Cited by

  1. The Mechanism of Action of Zingerone in the Pacemaker Potentials of Interstitial Cells of Cajal Isolated from Murine Small Intestine vol.46, pp.5, 2015, https://doi.org/10.1159/000489453
  2. Depolarization of pacemaker potentials by caffeic acid phenethyl ester in interstitial cells of Cajal from the murine small intestine vol.98, pp.4, 2015, https://doi.org/10.1139/cjpp-2019-0452
  3. Effects of Chaihu-Shugan-San on Small Intestinal Interstitial Cells of Cajal in Mice vol.43, pp.4, 2015, https://doi.org/10.1248/bpb.b19-01058