DOI QR코드

DOI QR Code

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University) ;
  • Kwon, Hyuk-Woo (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University) ;
  • Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology and Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University)
  • Received : 2014.12.09
  • Accepted : 2015.03.17
  • Published : 2015.10.15

Abstract

Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990;70:1177-209. https://doi.org/10.1152/physrev.1990.70.4.1177
  2. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984;312:315-21. https://doi.org/10.1038/312315a0
  3. Cattaneo M. The P2 receptors and congenital platelet function defects. Semin Thromb Hemost 2005;31:168-73. https://doi.org/10.1055/s-2005-869522
  4. Guidetti GF, Lova P, Bernardi B, Campus F, Baldanzi G, Graziani A, Balduini C, Torti M. The Gi-coupled P2Y12 receptor regulates diacylglycerol-mediated signaling in human platelets. J Biol Chem 2008;283:28795-805. https://doi.org/10.1074/jbc.M801588200
  5. Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 2009;103:4A-10A. https://doi.org/10.1016/S0002-9149(08)02058-4
  6. Nishikawa M, Tanaka T, Hidaka H. $Ca^{2+}$-calmodulin-dependent phosphorylation and platelet secretion. Nature 1980;287:863-5. https://doi.org/10.1038/287863a0
  7. Kaibuchi K, Sano K, Hoshijima M, Takai Y, Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 1982;3:323-35. https://doi.org/10.1016/0143-4160(82)90020-3
  8. Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol 2001;62:1153-61. https://doi.org/10.1016/S0006-2952(01)00760-2
  9. Cavallini L, Coassin M, Borean A, Alexandre A. Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol Chem 1996;271:5545-51. https://doi.org/10.1074/jbc.271.10.5545
  10. Quinton TM, Dean WL. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits $Ca^{2+}$ release from platelet membranes. Biochem Biophys Res Commun 1992;184:893-9. https://doi.org/10.1016/0006-291X(92)90675-B
  11. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34:259-63. https://doi.org/10.5142/jgr.2010.34.4.259
  12. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35:389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  13. Chung IM, Lim JW, Pyun WB, Kim H. Korean Red Ginseng improves vascular stiffness in patients with coronary artery disease. J Ginseng Res 2010;34:212-8. https://doi.org/10.5142/jgr.2010.34.3.212
  14. Wee JJ, Kim YS, Kyung JS, Song YB, Do JH, Kim DC, Lee SD. Identification of anticoagulant components in Korean Red Ginseng. J Ginseng Res 2010;34:355-62. https://doi.org/10.5142/jgr.2010.34.4.355
  15. Jung YH, Park KY, Jeon JH, Kwak YS, Song YB, Wee JJ, Rhee MH, Kim TW. Red Ginseng saponin fraction A isolated from Korean Red Ginseng by ultrafiltration on the porcine coronary artery. J Ginseng Res 2011;35:325-30. https://doi.org/10.5142/jgr.2011.35.3.325
  16. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean Red Ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 2008;6:778-83.
  17. Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits thromboxane $A_2$ production associated microsomal enzyme activity in platelets. J Ginseng Res 2012;36:40-6. https://doi.org/10.5142/jgr.2012.36.1.40
  18. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean Red Ginseng via vasodilator-stimulated phosphoprotein- Ser(157) phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  19. Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, Park MH, Park TY, Park HJ, Cho JY, Rhee MH. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167:109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  20. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60:1531-6. https://doi.org/10.1211/jpp.60.11.0015
  21. Lee SR, Park JH, Kim ND, Choi KJ. Inhibitory effects of ginsenoside Rg3 on platelet aggregation and its mechanism of action. J Ginseng Res 1997;21:132-40.
  22. Schaeffer J, Blaustein MP. Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 1989;10:101-13. https://doi.org/10.1016/0143-4160(89)90050-X
  23. Jin HX, Wu TX, Jiang YJ, Zou JW, Zhuang SL, Mao X, Yu QS. Role of phosphorylated Thr-197 in the catalytic subunit of cAMP-dependent protein kinase. J Mol Struct 2007;805:9-15. https://doi.org/10.1016/j.theochem.2006.10.020
  24. Charo IF, Feinman RD, Detwiler TC. Inhibition of platelet secretion by an antagonist of intracellular calcium. Biochem Biophys Res Commun 1976;72:1462-7. https://doi.org/10.1016/S0006-291X(76)80178-7
  25. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  26. Moriyama T, Takamura H, Narita H, Tanaka K, Matsuura T, Kito M. Elevation of cytosolic free $Ca^{2+}$ is directly evoked by thromboxane $A_2$ in human platelets during activation with collagen. J Biochem 1988;103:901-2. https://doi.org/10.1093/oxfordjournals.jbchem.a122383
  27. Charo IF, Feinman RD, Detwiler TC. Interrelations of platelet aggregation and secretion. J Clin Invest 1977;60:866-73. https://doi.org/10.1172/JCI108841
  28. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane $A_2$, and prostacyclin. Pharmacol Rev 1978;30:293-331.
  29. Authi KS, Evenden BJ, Crawford N. Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets. Biochem J 1986;233:707-18. https://doi.org/10.1042/bj2330707
  30. Castro-Malaspina H, Rabellino EM, Yen A, Nachman RL, Moore MA. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 1981;57:781-7.
  31. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-8. https://doi.org/10.1126/science.284.5422.1994
  32. Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I. Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost 2005;3:1569-76. https://doi.org/10.1111/j.1538-7836.2005.01366.x
  33. Schwartz SM, Reidy MA. Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Hum Pathol 1987;18:240-7. https://doi.org/10.1016/S0046-8177(87)80006-0
  34. Packham MA, Mustard JF. The role of platelets in the development and complications of atherosclerosis. Semin Hematol 1986;23:8-26.
  35. Schwartz SM, Ross R. Cellular proliferation in atherosclerosis and hypertension. Prog Cardiovasc Dis 1984;26:355-72. https://doi.org/10.1016/0033-0620(84)90010-0
  36. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 1982;92:584-8. https://doi.org/10.1083/jcb.92.2.584
  37. Phillips DR, Conley PB, Sinha U, Andre P. Therapeutic approaches in arterial thrombosis. J Thromb Haemost 2005;3:1577-89. https://doi.org/10.1111/j.1538-7836.2005.01418.x
  38. Byeon SE, Choi WS, Hong EK, Lee J, Rhee MH, Park HJ, Cho JY. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch Pharm Res 2009;32:813-22. https://doi.org/10.1007/s12272-009-1601-7
  39. Park JS, Cho JY. Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. Afr J Biotechnol 2009;8:3682-90.
  40. Lee YJ, Han JY, Lee CG, Heo K, Park SI, Park YS, Kim JS, Yang KM, Lee KJ, Kim TH, et al. Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells. J Ginseng Res 2014;38:208-14. https://doi.org/10.1016/j.jgr.2014.02.001
  41. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, et al. Antithrombotic and antiplatelet activities of Korean Red Ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  42. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  43. Lee JG, Lee YY, Kim SY, Pyo JS, Yun-Choi HS, Park JH. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Pharmazie 2009;64:602-4.
  44. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Yue M, Liu Y, Hu X, Hu H. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2014;133:57-65. https://doi.org/10.1016/j.thromres.2013.10.032
  45. Kuo SC, Teng CM, Lee JC, Ko FN, Chen SC, Wu TS. Antiplatelet components in Panax ginseng. Planta Med 1990;56:164-7. https://doi.org/10.1055/s-2006-960916
  46. Teng CM, Kuo SC, Ko FN, Lee JC, Lee LG, Chen SC, Huang TF. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 1989;990:315-20. https://doi.org/10.1016/S0304-4165(89)80051-0
  47. Mustard JF, Packham MA. Factors influencing platelet function: adhesion, release, and aggregation. Pharmacol Rev 1970;22:97-187.
  48. Holmsen H. Prostaglandin endoperoxide-thromboxane synthesis and dense granule secretion as positive feedback loops in the propagation of platelet responses during "the basic platelet reaction". Thromb Haemost 1977;38:1030-41. https://doi.org/10.1055/s-0038-1651921
  49. Borgdorff P, Tangelder GJ. Migraine: possible role of shear-induced platelet aggregation with serotonin release. Headache 2012;52:1298-318. https://doi.org/10.1111/j.1526-4610.2012.02162.x
  50. Kromer W. Drug treatment of pain. 4: Headache and migraine, drug interactions, contra-indications, use of analgesics in pregnancy and lactation. Fortschr Med 1986;104:771-4 [Article in German].
  51. Jernej B, Vladic A, Cicin-Sain L, Hranilovic D, Banovic M, Balija M, Bilic E, Sucic Z, Vukadin S, Grgicevic D. Platelet serotonin measures in migraine. Headache 2002;42:588-95. https://doi.org/10.1046/j.1526-4610.2002.02145.x
  52. Danese E, Montagnana M, Lippi G. Platelets and migraine. Thromb Res 2014;134:17-22. https://doi.org/10.1016/j.thromres.2014.03.055

Cited by

  1. Inhibitory Effects of Total Saponin Korean Red Ginseng on Thromboxane A2 Production and P-Selectin Expression via Suppressing Mitogen-Activated Protein Kinases vol.23, pp.4, 2015, https://doi.org/10.15616/bsl.2017.23.4.310
  2. 20(S)-ginsenoside Rg3 inhibits glycoprotein IIb/IIIa activation in human platelets vol.61, pp.3, 2015, https://doi.org/10.3839/jabc.2018.037
  3. Inhibitory Effects of PD98059, SB203580, and SP600125 on α-and δ-granule Release and Intracellular Ca2+ Levels in Human Platelets vol.24, pp.3, 2018, https://doi.org/10.15616/bsl.2018.24.3.253
  4. Inhibitory Effect of 20(S)-Ginsenoside Rg3 on Human Platelet Aggregation and Intracellular Ca 2+ Levels via Cyclic Adenosine Monophosphate Dependent Manner vol.23, pp.4, 2018, https://doi.org/10.3746/pnf.2018.23.4.317
  5. Inhibitory Effects of Ginsenoside Ro on Clot Retraction through Suppressing PI3K/Akt Signaling Pathway in Human Platelets vol.24, pp.1, 2015, https://doi.org/10.3746/pnf.2019.24.1.56
  6. Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP3RI and VASP vol.62, pp.1, 2015, https://doi.org/10.3839/jabc.2019.014
  7. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor vol.64, pp.None, 2015, https://doi.org/10.1016/j.phymed.2019.152899
  8. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications vol.159, pp.None, 2020, https://doi.org/10.1016/j.phrs.2020.105031