DOI QR코드

DOI QR Code

Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on pool-boiling critical heat flux enhancement

  • Park, Sung-Seek (Department of Nuclear & Energy Engineering, Jeju National University) ;
  • Kim, Yong Hwan (Department of Mechanical Engineering, Jeju National University) ;
  • Jeon, Yong Han (Department of Protection and Safety, Sang Ji Young seo College) ;
  • Hyun, Myung Taek (Department of Mechanical Engineering, Jeju National University) ;
  • Kim, Nam-Jin (Department of Nuclear & Energy Engineering, Jeju National University)
  • Received : 2014.06.09
  • Accepted : 2014.09.27
  • Published : 2015.07.25

Abstract

This paper examines the differences in critical heat flux (CHF) based on multi-wall carbon nanotubes and graphene have been found as new heat-transfer materials which are carbon allotropes with different shapes. The analysis of experimental data and results of calculations in pool-boiling critical heat flux experiments by spray-depositing oxidized multi-wall carbon nanotubes and graphene onto heat-transfer samples have been done to improve the economic efficiency and safety of the heat-transfer apparatus. The results show that the contact angle of the heat-transfer surface linearly decreased with spray deposition time, which resulted in an increased critical heat flux. The oxidized multi-wall carbon nanotubes and graphene showed maximum pool-boiling heat-transfer coefficients at $19.8^{\circ}$ and $21.7^{\circ}$, respectively, while the pool-boiling heat-transfer coefficients decreased at angles of $9.9^{\circ}$ or less and $12.5^{\circ}$ or less, respectively. Also, the following new correction formula has been derived and compared with a current model by introducing a correction factor to Kandlikar's prediction model.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S.K.R. Chowdhury, R.H.S. Winterton, Int. J. Heat Mass Transfer 28 (10) (1985) 1881. https://doi.org/10.1016/0017-9310(85)90210-8
  2. S.G. Liter, M. Kaviany, Int. J. Heat Mass Transfer 44 (2001) 4287. https://doi.org/10.1016/S0017-9310(01)00084-9
  3. E. Hahne, T. Diesselhorst, Hydrodynamic and surface on the peak heat flux in pool boiling, in: Proceeding of Sixth International Heat Transfer Conference, Toronto, (1978), p. 1.
  4. S.P. Liaw, V.K. Dhir, Effect of surface wettability on transition boiling heat transfer from a vertical surface, in: Proceeding of Eighth International Heat Transfer Conference, 1986, p. 2031, 4.
  5. H.D. Kim, M.H. Kim, Appl. Phys. Lett. 91 (2007) 014104. https://doi.org/10.1063/1.2754644
  6. H.D. Kim, J. Kim, M.H. Kim, Int. J. Multiphase Flow 33 (2007) 691. https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007
  7. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Int. J. Heat Mass Transfer 50 (2007) 4105. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
  8. M.N. Golubovic, H.D.M. Hettiarachchi, W.M. Worek, W.J. Minkowycz, Appl. Therm. Eng. 29 (2009) 1281. https://doi.org/10.1016/j.applthermaleng.2008.05.005
  9. S.D. Park, S.W. Lee, S. Kang, S.M. Kim, I.C. Bang, Nucl. Eng. Des. 252 (2012) 184. https://doi.org/10.1016/j.nucengdes.2012.07.016
  10. H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Int. J. Heat Mass Transfer 52 (2009) 5459. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032
  11. B. Truong, L.W. Hu, J. Buongiorno, T. McKrell, Int. J. Heat Mass Transfer 53 (2010) 85. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.002
  12. H.S. Ahn, et al. Nucl. Eng. Des. 240 (2010) 3350. https://doi.org/10.1016/j.nucengdes.2010.07.006
  13. H.S. Ahn, J.M. Kim, M.H. Kim, Int. J. Heat Mass Transfer 60 (2013) 763. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.052
  14. S.G. Kandlikar, ASME J. Heat Transfer 123 (2001) 1071. https://doi.org/10.1115/1.1409265
  15. Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455 (2007) (2007) 70. https://doi.org/10.1016/j.tca.2006.11.036
  16. R. Walvekar, I.A. Faris, M. Khalid, Heat Transfer Asian Res. 41 (2012) 145. https://doi.org/10.1002/htj.20405
  17. S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, T. Inoue, P. Zhao, M. Watanabe, S. Chiashi, J. Shiomi, S. Maruyama, Mater. ExpressV 2 (2012) 213. https://doi.org/10.1166/mex.2012.1074
  18. W. Yu, H. Xie, X. Wang, X. Wang, Phys. Lett. A 375 (2011) 1323. https://doi.org/10.1016/j.physleta.2011.01.040
  19. N. Zuber, ASME Trans. 80 (1958) 711.
  20. S.J. Kline, F.A. McClintock, Mech. Eng. 75 (1953) 3.

Cited by

  1. A comprehensive review on graphene nanofluids: Recent research, development and applications vol.111, pp.None, 2016, https://doi.org/10.1016/j.enconman.2016.01.004
  2. 나노유체에서 파울링 현상이 유동 비등 열전달에 미치는 영향에 대한 연구 vol.28, pp.3, 2015, https://doi.org/10.6110/kjacr.2016.28.3.095
  3. 유동 비등 시스템에서 산화 그래핀 나노유체의 열전달 및 파울링에 대한 연구 vol.36, pp.3, 2015, https://doi.org/10.7836/kses.2016.36.3.063
  4. Wetting behavior of multi-walled carbon nanotube nanofluids vol.28, pp.10, 2015, https://doi.org/10.1088/1361-6528/aa5a5f
  5. Boiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures vol.139, pp.11, 2017, https://doi.org/10.1115/1.4036678
  6. 나노 코팅을 이용한 열전달 향상에 대한 연구 vol.14, pp.2, 2015, https://doi.org/10.17664/ksgee.2018.14.2.008
  7. Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review vol.11, pp.11, 2018, https://doi.org/10.3390/en11113189
  8. Experimental investigation on the influence of carbon-based nanoparticle coating on the heat transfer characteristics of the microprocessor vol.54, pp.1, 2020, https://doi.org/10.1177/0021998319859926
  9. Effect of Ball Milled and Sintered Graphene Nanoplatelets–Copper Composite Coatings on Bubble Dynamics and Pool Boiling Heat Transfer vol.22, pp.7, 2020, https://doi.org/10.1002/adem.201901562
  10. Amelioration of boiling heat transfer by 3D deposition structure of graphene-silver hybrid nanoparticle vol.12, pp.None, 2015, https://doi.org/10.1016/j.ecmx.2021.100109
  11. Review of pool and flow boiling heat transfer enhancement through surface modification vol.181, pp.None, 2015, https://doi.org/10.1016/j.ijheatmasstransfer.2021.122020
  12. Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings vol.11, pp.12, 2015, https://doi.org/10.3390/nano11123383