DOI QR코드

DOI QR Code

The CmACS-7 Gene Provides Sequence Variation for Development of DNA Markers Associated with Monoecious Sex Expression in Melon (Cucumis melo L.)

  • Kim, Nahui (Department of Horticultural Bioscience, Pusan National University) ;
  • Oh, Juyeol (Gyeongnam Agricultural Research & Extension Services) ;
  • Kim, Bichseam (Department of Horticultural Bioscience, Pusan National University) ;
  • Choi, Eung Kyu (Jangchun Seed Company) ;
  • Hwang, Un Sun (Jangchun Seed Company) ;
  • Staub, Jack E. (U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory) ;
  • Chung, Sang-Min (Department of Life Science, Dongguk University-Seoul) ;
  • Park, Younghoon (Department of Horticultural Bioscience, Pusan National University)
  • Received : 2015.02.12
  • Accepted : 2015.08.02
  • Published : 2015.08.31

Abstract

Most melon (Cucumis melo L.) breeding lines in South Korea display andromonoecious sex expression, which necessitates laborious hand emasculation during F1 hybrid seed production. Thus, there is a need to develop monoecious sex types in elite germplasm to obviate self-pollination. Sex expression is associated with floral ethylene production, which, in monecious melon plants, is associated with the A locus. Our study was conducted to develop molecular markers for selection of monoecious plants based on sequence variation inherent in the CmACS-7 gene [encoding 1-aminocyclopropane-1-carboxylic acid synthase (ACS)] that is associated with ethylene production. Full-length CmACS-7 sequences were cloned from a monoecious (MO23) and an andromonoecious (AM24) line. The alignment of those CmACS-7 sequences revealed a single nucleotide polymorphism (SNP; C170T) in exon 1 and an 18 bp indel in the 3'-untranslated region (UTR) of between MO23 and AM24, which was then used to develop a cleaved amplified polymorphic sequence (CAPS) (EX1-C170T) and a sequence characterized amplified region (SCAR) marker (T1ex), respectively. The sex expression and the T1ex SCAR-based genotype of 442 $F_2$ plants derived from a $MO23{\times}AM24$ cross was determined. Monoecy and andromonoecy segregated in a 3:1 ratio in $F_2$ progeny, where the sex type of 429 plants (13 plants not classified) co-segregated with the SCAR marker, demonstrating that sex expression regulated by CmACS-7 is controlled by a single dominant gene and that it confers monoecy in line MO23. Allelic variation in 112 geographically diverse melon lines for CmACS-7 as accessed by CAPS EX1-C170T and SCAR T1ex markers indicated that the: 1) exon 1 of CmACS-7 is highly conserved and the SNP/sex expression association detected is highly predictable making it potentially useful for marker-based selection of monoecious plants, and; 2) 18 bp indel mutation in the 3'-UTR was present in various lengths depending on different monoecious melon germplasm.

Keywords

Acknowledgement

Supported by : Ministry of Agriculture , Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA), Korea Forest Service (KFS)

References

  1. Boualem, A., M. Fergany, R. Fernandez, C. Troadec, A. Martin, H. Morin, M.A. Sari, F. Collin, J.M. Flowers, M. Pitrat, M.D. Purugganan, C. Dogimont, and A. Bendahmane. 2008. A conserved mutation in an eth-ylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836-838. https://doi.org/10.1126/science.1159023
  2. Fazio, G., J.E. Staub, and M.R. Stevens. 2003. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor. Appl. Genet. 107: 864-874. https://doi.org/10.1007/s00122-003-1277-1
  3. Feng, H., X.M. Li, Z.Y. Liu, P. Wei, and R.Q. Ji. 2009. A co-dominant molecular marker linked to the monoecious gene CmACS-7 derived from gene sequence in Cucumis melo L. Afr. J. Biotechnol. 8:3168-3174.
  4. Freeman, D.C., E.D. McArthur, K.T. Harper, and A.C. Blauer. 1981. Influence of environment on the floral sex ratio of monoecious plants. Evolution 35:194-197. https://doi.org/10.2307/2407956
  5. Grumet, R. and J. Taft. 2012. Sex expression in Cucurbits, p. 351-375. In: Y.H. Wang, T.K. Behera, and C. Kole (eds.) Genetics, Genomics, and Breeding of Cucurbits. CRC Press, New York, NY, USA
  6. Hwang, J., S. Ahn, J. Oh, Y. Choi, J. Kang, and Y. Park. 2011. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci. Hortic. 130:715-724. https://doi.org/10.1016/j.scienta.2011.08.014
  7. Hwang, J., J. Oh, Z. Kim, J.E. Staub, S. Chung, and Y. Park. 2014. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Mol. Breeding. 34:949-961. https://doi.org/10.1007/s11032-014-0088-1
  8. Jett, L. 2006. High tunnel melon and watermelon production. Univ. Missouri Ext. M173. University of Missouri, Columbia, MO, USA. https://doi.org/10.1007/s11032-014-0088-1
  9. Kenigsbuch, D. and Y. Cohen. 1990. The inheritance of gynoecy in muskmelon. Genome 33:317-320. https://doi.org/10.1139/g90-049
  10. Kubicki, B. 1969. Sex determination in muskmelon (Cucumis melo L.). Genet. Pol. 10:145-165.
  11. Li, A., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, H. Chen, L. Si, Z. Zhu, and R. Cai. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385. https://doi.org/10.1534/genetics.109.104737
  12. Martin, A., C. Troadec, A. Boualem, R. Mazen, R. Fernandez, H. Morin, M. Pitrat, C. Dogimont, and A. Bendahmane. 2009. A transposon induced epigenetic change leads to sex determination in melon. Nature 461:1135-1139. https://doi.org/10.1038/nature08498
  13. Na, J.D., H.S. Choi, J.A. Jo, W.S. Kim, J.K. An, C. Na, and H.J. Jee. 2012. Fruit characteristics of muskmelon cultivars in six regions in South Korea. J. Food, Agric. Environ. 10:871-874.
  14. Nakata, E., J.E. Staub, A. Lopez-Sese, and N. Katzir. 2005. Genetic diversity in Japanese melon (Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeat markers. Genet. Res. Crop Evol. 52:405-419. https://doi.org/10.1007/s10722-005-2258-9
  15. Papadopoulou, E., H.A. Little, S.A. Hammar, and R. Grumet. 2005. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Reprod. 18:131-142. https://doi.org/10.1007/s00497-005-0006-0
  16. Perl-Treves, R. 1999. Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus, p. 189-215. In: C.C. Ainsworth (ed.) Sex Determination in Plants. Bios Scientific Pulb, Oxford, UK.
  17. Pitrat, M., P. Hanelt, and K. Hammer. 2000. Some comments on infraspecific classification of cultivars of melon. Acta. Hortic. (ISHS) 510:29-36.
  18. Poole, C.F. and P.C. Grimball. 1939. Inheritance of new sex forms in Cucumis melo L. J. Hered. 30:21-25. https://doi.org/10.1093/oxfordjournals.jhered.a104626
  19. Robinson, R.W. and D.S. Decker-Walters. 1997. Cucurbits, p. 9-10; 17-19; 195-198. In: R.W. Robinson and D.S. Decker-Walters (eds.) CAB International New York, NY, USA.
  20. Roy, R.P. and S. Saran. 1990. Sex expression in the Cucurbitaceae, p. 251-268. In: D.M. Bates, R.W. Robinson, and C. Jeffrey (eds.) Biology and Utilization of the Cucurbitaceae Cornell Univ Press, Ithaca, NY, USA.
  21. Rudich, J. 1990. Biochemical aspects of hormonal regulation of sex expression in Cucurbits, p. 269-280. In: D.M. Bates, R.W. Robinsons and C. Jeffrey (eds.) Biology and Utilization of the Cucurbitaceae. Cornell Univ. Press, Ithaca, NY, USA.
  22. Rudich, J., L.R. Baker, J.W. Scott, and H.M. Sell. 1976. Phenotypic stability and ethylene evolution in androecious cucumber. J. Am. Soc. Hortic. Sci. 101:48-51.
  23. Rudich, J., A.H. Halevy, and N. Kedar. 1972. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49:998-999. https://doi.org/10.1104/pp.49.6.998
  24. Scharer, M.A., A.C. Eliot, M.G. Grutter, and G. Capitani. 2011. Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS lett. 585:111-114. https://doi.org/10.1016/j.febslet.2010.11.013
  25. Stepansky, A., I. Kovalski, and R. Perl-Treves. 1999. Intraspecific classifcation of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 217:313-332. https://doi.org/10.1007/BF00984373
  26. Stephen, L.D. and C.U. Alejandro. 1993. Sex determination in flowering plants. Plant Cell 5:1241-1251. https://doi.org/10.1105/tpc.5.10.1241
  27. Tanurdzic, M. and J.A. Banks. 2004. Sex-determining mechanisms in land plants. Plant Cell Online, 16(suppl. 1):S61-S71. https://doi.org/10.1105/tpc.016667
  28. Trebitsch, T., J.E. Staub, and S.D. O'Neill. 1997. Identification of a 1-aminocyclopropane-1-carboxylate synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 113:987-995. https://doi.org/10.1104/pp.113.3.987
  29. Waller, J.L. and M.H. Johnson. 2013. Chi-square and T tests Using SAS: Performance and Interpretation. Retrieved on January 3, 2014 from support.sas.com/resources/papers/proceedings 13.
  30. Yamasaki, S., N. Fujii, S. Matsura, H. Mizusawa, and H. Takahahi. 2001. The M locus and ethylene-controlled sex determination in andromonecious cucumber plants. Plant Cell Physiol. 42:608-619. https://doi.org/10.1093/pcp/pce076
  31. Zalapa, J.E., J.E. Staub, S.M. Chung, H. Cuevas, and J.D. McCreight. 2007. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor. Appl. Genet. 114:1185-1201. https://doi.org/10.1007/s00122-007-0510-8

Cited by

  1. 주요 박과작물의 유전체 및 분자마커 연구 현황 vol.25, pp.9, 2015, https://doi.org/10.5352/jls.2015.25.9.1059
  2. 멜론 유전자원의 원예형질 특성 및 유연관계 분석 vol.42, pp.4, 2015, https://doi.org/10.5010/jpb.2015.42.4.401
  3. 성발현 연관 분자마커를 이용한 단성화 참외 선발 vol.34, pp.1, 2015, https://doi.org/10.12972/kjhst.20160007
  4. Inheritance and gene mapping of spotted to non-spotted trait gene CmSp-1 in melon (Cucumis melo L. var. chinensis Pangalo) vol.38, pp.8, 2018, https://doi.org/10.1007/s11032-018-0860-8
  5. Genetic fidelity of regenerated plants via shoot regeneration of muskmelon by inter simple sequence repeat and flow cytometry vol.20, pp.2, 2015, https://doi.org/10.1016/j.jssas.2020.12.003
  6. Genetic analysis and inheritance of floral and fruit traits in melon (Cucumis melo) in the full diallel cross vol.140, pp.3, 2015, https://doi.org/10.1111/pbr.12915