DOI QR코드

DOI QR Code

Enhancement of Antioxidative Activities of Berry or Vegetable Juices through Fermentation by Lactic Acid Bacteria

젖산균 발효를 통한 베리류 또는 과채류 주스의 항산화 활성 증진

  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Sim, Hyun-Su (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2015.06.02
  • Accepted : 2015.08.12
  • Published : 2015.09.28

Abstract

Berry or vegetable juices contain a diverse range of antioxidants. Through oxygen radical absorbance capacity assays, acai berry, aronia, wild grape, blackberry, cranberry, and spinach juices were verified to possess high antioxidant activities. Lactic acid bacteria fermentation was applied to each juice as the sole medium to improve antioxidant activity. After fermentation by Lactobacillus plantarum, the antioxidant activities of acai berry, blackberry, and spinach juices increased by 20–30% from 943.2 to 1239.2, from 110.87 to 128.04, and from 77.92 to 107.20 µmol TE/g, respectively. In this study, we found that the antioxidant activities of a number of juices were enhanced through lactic acid bacteria fermentation.

베리 또는 과채류 주스에는 다양한 종류의 항산화물질들이 함유되어 있는 것으로 알려져 있다. Oxygen radical absorbance capacity 측정 결과 아사이베리, 아로니아, 산머루, 블랙베리, 크랜베리, 시금치 주스로부터 높은 항산화 활성을 확인할 수 있었다. 선별된 베리 또는 과채류 주스의 항산화 활성을 증가시키기 위해 젖산균을 이용한 발효를 수행하였다. 아사이베리, 블랙베리, 또는 시금치 주스의 경우 Lactobacillus plantarum를 이용한 발효 후에 항산화 활성이 각각 943.2 µmol TE/g에서 1239.2 µmol TE/g로 110.87 µmol TE/g에서 128.04 μmol TE/g로 77.92 µmol TE/g에서 107.20 µmol TE/g로 약 16−38% 향상되었다. 본 연구를 통해 아사이베리, 블랙베리, 또는 시금치 주스의 항산화 활성이 젖산균 발효를 통해 증가하는 것을 확인하였다.

Keywords

References

  1. Balogh E, Hegedus A, Stefanovits-Banyai E. 2010. Application of and correlation among antioxidant and antiradical assays for characterizing antioixdant capacity of berries. Sci. Hortic-Amsrerdam. 125: 332−336. https://doi.org/10.1016/j.scienta.2010.04.015
  2. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199−1200. https://doi.org/10.1038/1811199a0
  3. Bokkenheuser V, Shackleton CHL, Winter J. 1987. Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem. J. 248: 953−956. https://doi.org/10.1042/bj2480953
  4. Cho MJ, Howard LR, Prior RL, Clark JR. 2004. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Food Agric. 84: 1771−1782. https://doi.org/10.1002/jsfa.1885
  5. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. 1995. The characterization of antioxidants. Food Chem. Toxic. 33: 601−617. https://doi.org/10.1016/0278-6915(95)00024-V
  6. Harter HL. 1960. Critical values for Duncan’s new multiple range test. Biometrics. 16: 671−685. https://doi.org/10.2307/2527770
  7. Hitomi O, Michiko O, Kenji S. 2006. Xylooligosaccharide fermentation with Leuconostoc lactis. J. Biosci. Bioeng. 101: 415−420. https://doi.org/10.1263/jbb.101.415
  8. Ismail A, Marjan ZM, Foong CW. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87: 581−586. https://doi.org/10.1016/j.foodchem.2004.01.010
  9. Jang MH, Kim MD. 2010. Exploration of β-glucosidase activity of lactic acid bacteria isolated from kimchi. Food Eng Prog. 14: 243−248.
  10. Jang MH, Kim MD. 2011. β-1,4-Xylosidase activity of leuconostoc lactic acid bacteria isolated from kimchi. Korea J. Food Sci. Technol. 43: 169−175. https://doi.org/10.9721/KJFST.2011.43.2.169
  11. Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X. 2010. Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem. 122: 610−617. https://doi.org/10.1016/j.foodchem.2010.03.020
  12. Kang OJ. 2010. Production of fermented tea with Rhodotorula yeast and comparison of its antioxidant effects to those of unfermented tea. Korean J. Food Cookery Sci. 26: 422−427.
  13. Kim DB, Shin GH, Cho JH, Baik SO, Lee OH. 2013. Antioxidant activities of beverage concentrates and purees. J. Korean Soc. Food Sci. Nutr. 42: 997−1002. https://doi.org/10.3746/jkfn.2013.42.7.997
  14. Kim HS, Ham JS. 2003. Antioxidative ability of lactic acid bacteria. Korea J. Food Sci. Ani. Resour. 23: 186−192.
  15. Kim HY, Hwang IK, Lee YR, Jeong HS. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korea J. Food Sci. 40: 166−170.
  16. Lee BH, Kim SY, Cho CH, Chung DG, Chun OK, Kim DO. 2011. Estimation of daily per capita intake of total phenolics, total flavonoids, and antioxidant capacities from fruit and vegetable juices in the korean diet based on the Korea national health and nutrition examination survey 2008. Korea J. Food Sci. 43: 475−482. https://doi.org/10.9721/KJFST.2011.43.4.475
  17. Lindroth RL. 1988. Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochem. 18: 789−792. https://doi.org/10.1016/0020-1790(88)90102-3
  18. Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. 2010. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J. Agric. Food Chem. 58: 4959−4969. https://doi.org/10.1021/jf100128b
  19. Park HM, Yang SJ, Kang EJ, Lee DH, Kim DI, Hong JH. 2012. Quality characteristics and granule manufacture of mulberry and blueberry fruit extracts. Korean J. Food Cookery Sci. 28: 375−382. https://doi.org/10.9724/kfcs.2012.28.4.375
  20. Park SJ, Kim ES, Choi YS, Kim JD. 2008. Effects of sophorae fructus on antioxidative activities and lipid levels in rats. J. Korean Soc. Food Sci. Nutr. 37: 1120−1125. https://doi.org/10.3746/jkfn.2008.37.9.1120
  21. Suh JH, Paek OJ, Kang YW, Ahn JE, Yun JS, Oh KS, et al. 2013. Study on the antioxidant activity in the various vegetables. J. Food Hyg. Safety 28: 337−341. https://doi.org/10.13103/JFHS.2013.28.4.337
  22. Ungvari Z, Ridgway I, Philipp EE, Campbell CM, McQuary P, Chow T, et al. 2011. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J. Gerontol. A. Biol. Sci. Med. Sc. 66: 741−750.
  23. Valko M, Leibfritz D, Moncol J, Cronin M, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44−84. https://doi.org/10.1016/j.biocel.2006.07.001
  24. Velioglu YS, Mazza G, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113−4117. https://doi.org/10.1021/jf9801973
  25. Yang HS, Choi YJ, Oh HH, Moon JS, Jung HK, Kim KJ, et al. 2014. Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. J. Korean Soc. Food Sci. Nutr. 43: 80−85. https://doi.org/10.3746/jkfn.2014.43.1.080
  26. Zhu N, Sheng S, Li D, Lavoie EJ, Karwe MV, Rosen RT, et al. 2001. Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa willd). J. Food Lipids 8: 37−44. https://doi.org/10.1111/j.1745-4522.2001.tb00182.x

Cited by

  1. 유산균 발효 생두를 이용한 에스프레소 커피의 품질 특성 및 항산화 활성 vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1799
  2. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0060-z
  3. 유산균을 이용한 보리의 발효를 통한 항산화 및 미백 효과 vol.28, pp.4, 2015, https://doi.org/10.5352/jls.2018.28.4.444
  4. Fermentation Characteristics of Mulberry Concentrate by Lactic Acid Bacteria Isolated from Mulberry and Elderberry vol.34, pp.6, 2015, https://doi.org/10.9724/kfcs.2018.34.6.598
  5. Changes in physicochemical and functional properties of Opuntia humifusa by fermentation with Citrus junos flesh and peel vol.28, pp.5, 2021, https://doi.org/10.11002/kjfp.2021.28.5.632