DOI QR코드

DOI QR Code

Kinetics of Fe2Al5 Phase Formation on 4130 Steel by Al Pack Cementation and Its Oxidation Resistance

  • Son, Y.I. (Agency for Defense Development) ;
  • Chung, C.H. (Hanbat National University, Department of Materials Science & Engineering) ;
  • Gowkanapalli, R.R. (Hanbat National University, Department of Materials Science & Engineering) ;
  • Moon, C.H. (Hoseo University, School of Display Engineering) ;
  • Park, J.S. (Hanbat National University, Department of Materials Science & Engineering)
  • Received : 2014.05.01
  • Accepted : 2014.06.03
  • Published : 2015.01.20

Abstract

Aluminide coatings were developed on low alloy AISI 4130 steel in the temperature range of $500{\sim}700^{\circ}C$ by pack cementation method. A $Fe_2Al_5$ phase was produced on the surface of the steel samples. The coating layer showed a single and a uniform structure. The growth kinetics of the coating layer exhibited a diffusional growth. The activation energy for formation of $Fe_2Al_5$ was estimated to be $53.7kJ\;mol^{-1}$. Oxidation tests were carried out for both the aluminized and the bare steels in the temperature range of $500{\sim}700^{\circ}C$. In the case of the coated specimens, the upper region of the aluminide layer was converted to an $Al_2O_3$ layer. The oxidation resistance tests showed that the presence of $Fe_2Al_5$ layer increased the oxidation resistance of AISI 4130 steels via formation of the $Al_2O_3$ layer. The coated specimen exhibited an increased oxidation resistance by about two orders. The kinetics of the coating layer has also been discussed in terms of microstructural observations and estimation of the corresponding parameters.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. T. V. Philip, Ultrahigh-strength steels. ASM handbook, Volume 1, Properties and Selection: Irons, Steels, and High Performance Alloys, p.211, ASM International, USA (2003).
  2. D. B. Lee, Korean J. Met. Mater. 52, 899 (2014). https://doi.org/10.3365/KJMM.2014.52.11.899
  3. J. Y. Choi, S. W. Hwang, M. C. Ha, and K. T. Park, Met. Mater. Int. 20, 893 (2014). https://doi.org/10.1007/s12540-014-5014-x
  4. S. K. Kwan, Y. M. Kong, and J. H. Park, Met. Mater. Int. 20, 959 (2014). https://doi.org/10.1007/s12540-014-5022-x
  5. E. N’Dah , S. Tsipas, M. P. Hieero, and F. J. Perez, Corros Sci 49, 3850 (2007). https://doi.org/10.1016/j.corsci.2007.05.011
  6. B. Helene and B. V. Jean, Procedia Eng. 2, 917 (2010). https://doi.org/10.1016/j.proeng.2010.03.099
  7. A. Aguero, J. Garciade Blas, R. Muelas, A. Sanchez, and S. Tripas, Mater. Sci. Forum 369-372, 939 (2001). https://doi.org/10.4028/www.scientific.net/MSF.369-372.939
  8. Z. D. Xiang, J. S. Burnell-Gray, and P. K. Datta, J. Mater. Sci. 36, 5673 (2001). https://doi.org/10.1023/A:1012534220165
  9. Z. D. Xiang and P. K. Datta, Acta Mater., 54, 4453 (2006). https://doi.org/10.1016/j.actamat.2006.05.032
  10. B. L. Bates, Y. Q. Wang, Y. Zhang, and B. A. Pint, Surface & Coatings Technol 204, 766 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.063
  11. B. Ching-Yuan, L. Yi-Jun, and K. Chun-Hao, Surface & Coatings Technol 183, 74 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.011
  12. Z. Zhan, L. Zhong, L. Jianxiong, L. Li, Z. Li, and P. Liao, Applied Surface Science 256, 3874 (2010). https://doi.org/10.1016/j.apsusc.2010.01.043
  13. P. F. Tortorelli and K. Natesan, Mater Sci Eng A258, 115 (1998).
  14. H. Okamoto, Phase diagrams for binary alloys, ASM International, p.31, USA (1992).
  15. V. Behrani Ph.D. Thesis, Georgia Institute of Technology, USA (2007).
  16. V. Jindal, V. C. Srivastava, A. Das, and R. N. Ghosh, Materials Letters 60, 1758 (2006). https://doi.org/10.1016/j.matlet.2005.12.013
  17. Z. D. Xiang and P. K. Datta, Surface and Coatings Technology 184, 108 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.046
  18. J. Li, J. Wang and X. Holly, Mater Sci Technol 19, 657 (2003). https://doi.org/10.1179/026708303225002046
  19. M. A. Montealegre, J. L. Gonzalez-Carrasco, and M. A. Munoz-Morris, Intermetallics 9, 487 (2001). https://doi.org/10.1016/S0966-9795(01)00028-0

Cited by

  1. Microstructure and creep resistance of a diffusionally aluminized Ni-base superalloy vol.22, pp.6, 2015, https://doi.org/10.1007/s12540-016-6218-z
  2. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels vol.24, pp.3, 2018, https://doi.org/10.1007/s12540-018-0064-0
  3. 다층 코팅된 Stainless Steel의 고온 내삭마특성 vol.28, pp.3, 2015, https://doi.org/10.3740/mrsk.2018.28.3.135
  4. Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron vol.9, pp.6, 2015, https://doi.org/10.3390/met9060648
  5. Microstructures and Oxidation Behaviors of Silicide Coated Nb Alloys by Halide Activated Pack Cementation Process vol.58, pp.8, 2015, https://doi.org/10.3365/kjmm.2020.58.8.507