DOI QR코드

DOI QR Code

Characterisation of Microstructure, Texture and Mechanical Properties in Ultra Low-Carbon Ti-B Microalloyed Steels

  • Shukla, R. (Research & Development Centre for Iron & Steel) ;
  • Ghosh, S.K. (Indian Institute of Engineering Science and Technology, Shibpur, Department of Metallurgy and Materials Engineering) ;
  • Chakrabarti, D. (Indian Institute of Technology Kharagpur, Department of Metallurgical and Materials Engineering) ;
  • Chatterjee, S. (Indian Institute of Engineering Science and Technology, Shibpur, Department of Metallurgy and Materials Engineering)
  • Received : 2014.03.07
  • Accepted : 2014.06.03
  • Published : 2015.01.20

Abstract

In the present study, thermo-mechanical controlled processing followed by water quenching has been utilised to produce ultra low-carbon microalloyed steel in a laboratory scale. The variation in microstructure and corresponding mechanical properties at the selected range of finish rolling temperatures (FRT), ($850-750^{\circ}C$) has been evaluated. The microstructures of the steels consisted of polygonal ferrite, acicular ferrite as well as granular bainite with the average ferrite grain sizes less than $5{\mu}m$. Finish rolling at $850^{\circ}C$ produced weak texture. ${\alpha}-fibre$ and ${\gamma}-fibre$ intensified with the decrease in finish rolling temperature to $800^{\circ}C$. Intensities of the beneficial texture components such as, {554}<225> and {332}<113> also reached the highest value at $800^{\circ}C$. Ferrite deformation texture i.e. ${\alpha}-fibre$ dominated at $750^{\circ}C$ FRT. The characteristic ferrite - bainite microstructure with fine ferrite grain size and uniform distribution of fine TiC particles (< 50 nm) resulted in high yield strength (405-507 MPa), moderate tensile strength (515-586 MPa) and high total elongation (19-22%) for the selected range of finish rolling temperatures. Fairly good impact toughness value in the range of 63-74J was obtained at subzero temperature ($-40^{\circ}C$) in the sub-size sample. The above strength - ductility - toughness combination boosts the potentiality of developed steel for the pipeline application.

Keywords

References

  1. M.-C. Zhao, K. Yang, and Y. Y. Shan, Mater. Sci. Eng. A, 335, 14 (2002). https://doi.org/10.1016/S0921-5093(01)01904-9
  2. I. DeS. Bott, L. F. C. G. Teixeira, and P. R. Rios, Metall. Trans. A, 36A, 443 (2005).
  3. I. H. G. Hillenbrand, I. M. Graf, and I. C. Kalwa, Proceedings of the Conference Niobium, Orlando, FL, USA, 12 (2001).
  4. A. Takahashi and M. Iino, Iron Steel Inst. Jpn. Int. 36, 235 (1996). https://doi.org/10.2355/isijinternational.36.235
  5. A. Takahashi and M. Iino, Iron Steel Inst. Jpn. Int. 36, 241 (1996). https://doi.org/10.2355/isijinternational.36.241
  6. A. Takahashi and H. Ogawa, Iron Steel Inst. Jpn. Int. 36, 334 (1996). https://doi.org/10.2355/isijinternational.36.334
  7. M-C Zhao and K. Yang, Scr. Mater. 52(9), 881 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.009
  8. A. Contreras, A. Albiter, M. Salazar, and R. Perez, Mater. Sci. Eng. A 407, 25 (2005).
  9. Y. M. Kim, S. K. Kim, Y. J. Lim, and N. J. Kim, Iron Steel Inst. Jpn. Int. 42, 1571 (2002). https://doi.org/10.2355/isijinternational.42.1571
  10. Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang, and K. Yang, Acta Mater. 54(2), 435 (2006). https://doi.org/10.1016/j.actamat.2005.09.015
  11. F.-R, Xiao, B. Liao, Y.-Y. Shan, G.-Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Mater. Sci. Eng. A 43, 41 (2006).
  12. K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua, and X. Changsheng, Mater. Des. 25, 723 (2004). https://doi.org/10.1016/j.matdes.2004.03.009
  13. W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, and S. H. Park, Scr. Mater. 43, 319 (2000). https://doi.org/10.1016/S1359-6462(00)00411-5
  14. W. Sun, C. Lu, A. K. Tieu, Z. Jiang, X. Liu, and G.Wang, J. Mater. Proc. Technol. 125-126, 72 (2002). https://doi.org/10.1016/S0924-0136(02)00287-X
  15. M. Assefpour-Dezfuly, B. A. Hugaas, and A. Brownrigg, Mater. Sci. Technol. 6, 1210 (1990). https://doi.org/10.1179/mst.1990.6.12.1210
  16. A. Guo, R. D. K. Misra, J. Xu, B. Guo, and S. G. Jansto, Mater. Sci. Eng. A 527, 3886 (2010). https://doi.org/10.1016/j.msea.2010.02.067
  17. M.-C. Zhao, K. Yang, and Y. Shan: Mater. Sci. Eng. A 335(1-2), 126 (2003).
  18. G. Krauss: Metall. Mater. Trans. B 34, 781 (2003). https://doi.org/10.1007/s11661-003-1006-z
  19. H. Tamehiro, H. Asahi, T. Hara, and Y. Terada, Ultra-high strength, weldable steels with excellent ultra-low temperature toughness, Pub. No., US6264760 B1, EXXON Production Research Company and NIPPON Steel; United States Patent 6264760 (1999).
  20. T. Ros-Yanez, Y. Houbaert, O. Fischer, and J. Schneider, J. Mater. Proc. Technol. 141, 132 (2003). https://doi.org/10.1016/S0924-0136(03)00247-4
  21. R. D. K. Misra, G. C. Weatherly, J. E. Hartmann, and A. J. Boucek, Mater. Sci. Technol. 17(9), 1119 (2001). https://doi.org/10.1179/026708301101511040
  22. W. Yan, Y.Y. Shan, and K. Yang, Metall. Mater. Trans. A 37, 2147 (2006). https://doi.org/10.1007/BF02586135
  23. A. Liessem, G. Knauf, and S. Zimmermann: ISOPE, SBD14, 1 (2007).
  24. F. R. Xiao, B. Liao, Y. Y. Shan, G. Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Mater. Sci. Eng. A 431, 41 (2006). https://doi.org/10.1016/j.msea.2006.05.029
  25. D. Liu, B. Cheng, and M. Luo: Iron Steel Inst. Jpn. Int. 51, 603 (2011). https://doi.org/10.2355/isijinternational.51.603
  26. B. Hwang, G. Y. Kim, S. Lee, J. N. Kim, and J. Y. Yoo, Metall. Mater. Trans. 36, 371(2005). https://doi.org/10.1007/s11661-005-0309-7
  27. R. K. Ray, and J. J. Jonas, Int. Mater. Rev. 35, 1(1990). https://doi.org/10.1179/095066090790324046
  28. S. Nafisi, M. A. Arafin, L. Collins, and J. Szpunar, Mater. Sci. Eng. A 531, 2 (2012). https://doi.org/10.1016/j.msea.2011.09.072
  29. O. Engler, C. N. Tomé, and M-Y. Huh, Metall. Mater. Trans. A 31, 2299 (2000). https://doi.org/10.1007/s11661-000-0146-7
  30. N. Kamikawa, T. Sakai, and N.Tsuji, Acta Mater. 55, 5873 (2007). https://doi.org/10.1016/j.actamat.2007.07.002
  31. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, Mater. Sci. Eng. A 587, 201(2013). https://doi.org/10.1016/j.msea.2013.08.054
  32. ASTM international, Annual book of ASTM standards 3, 01 (2013).
  33. Y. Ito and K. Bessyo: IIW Doc. IX, 631 (1969).
  34. F. Boratto, R. Barbosa, S. Yue, and J. J. Jonas, In THERMEC-88, Proceedings of the Iron and Steel Institute of Japan, p.383, Tokyo, Japan (1988).
  35. F. B. Pickering, In Proceedings of the Microalloying '75, p.9, Union Carbide Corp., New York (1977).
  36. X. Furen, L. Bo, R. Deliang, S. Yiyin, and Y. Ke, Mater. Character. 54, 305 (2005). https://doi.org/10.1016/j.matchar.2004.12.011
  37. S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, B. Jin-Ho, and K. Kim, Metall. Mater. Trans. A 41, 329 (2010). https://doi.org/10.1007/s11661-009-0135-4
  38. B. Hwang, C. G. Lee, and S. J. Kim, Metall. Mater. Trans. A 42, 717 (2011). https://doi.org/10.1007/s11661-010-0448-3
  39. D. M. Saylor, B. S. El Dasher, A. D. Rollett, and G. S. Rohrer, Acta Mater. 52, 3649 (2004). https://doi.org/10.1016/j.actamat.2004.04.018
  40. Z. Yang, Refinement of Austenitic Microstructure and Its Influence on ${\gamma}{\rightarrow}{\alpha}$ Transformation. Ultra-fine Grained Steels, p.53, Weng Y (ed.) Springer, 53 (2009).
  41. J. Adamczyk, J. Achieve Mater. Manufact. Eng. 14, 9 (2006).
  42. A. Bardelcik, C. P. Salisbury, S. Winkler, M. A. Wells, and M. J. Worswick, Int. J. Impact Eng. 37, 694 (2010). https://doi.org/10.1016/j.ijimpeng.2009.05.009
  43. K. J. Irvine, F. B. Pickering, and T. Gladman, JISI 205, 161 (1967).
  44. T. Gladman, D. Dulieu, and I. D. McIvor, Proceedings of the Symposium on Microalloying '75, p.32, Union Carbide Corp., New York (1977).
  45. A. Karmakar, R. D. K. Misra, S. Neogy, and D. Chakrabarti, Metall. Mater. Trans. A, 44, 4106 (2013). https://doi.org/10.1007/s11661-013-1757-0
  46. A. J. DeArdo, M. J. Hua, K. G. Cho, and C. I. Garcia, Mater. Sci. Technol. 25, 1074 (2009). https://doi.org/10.1179/174328409X455233
  47. D. J. Abson and R. J. Pargeter, Int. Met. Rev. 31, 141 (1986).
  48. H. K. D. H. Bhadeshia, Bainite in Steels, p.277, Institute of Materials, London, U. K. (2011).
  49. F. G. Caballero, H. Roelofs, St. Hasler, C. Capdevila, J. Chao, J. Cornide, and Garcia-Mateo, Mater. Sci. Technol. 28, 95 (2012). https://doi.org/10.1179/1743284710Y.0000000047
  50. I. Gutierrez, Mat. Sci. Eng. A, 571, 57 (2013). https://doi.org/10.1016/j.msea.2013.02.006
  51. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A, 34, 2505 (2003). https://doi.org/10.1007/s11661-003-0010-7
  52. S. Y. Shin, G. Gong, S. Kim, and S. Lee, Metall. Mater. Trans. A, 38, 1012 (2007). https://doi.org/10.1007/s11661-007-9125-6
  53. W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A, 502, 38 (2009). https://doi.org/10.1016/j.msea.2008.10.042
  54. S. Y. Shin, B. Hwang, S. Kim, and S. Lee, Mater. Sci. Eng. A, 429, 196 (2006). https://doi.org/10.1016/j.msea.2006.05.086
  55. S. Y. Shin, K. J. Woo, B. Hwang, S. Kim, and S. Lee, Metall. Mater. Trans. A, 40, 867 (2009). https://doi.org/10.1007/s11661-008-9764-2
  56. B. Hutchinson, L. Ryde, and P. Bate, Mater. Sci. Forum 495-497, 1141 (2005). https://doi.org/10.4028/www.scientific.net/MSF.495-497.1141
  57. H. Inagaki, Z. Metallkd., 74, 716 (1983).
  58. R. O. Williams, Trans. Met. Soc., AIME 224, 129 (1962).
  59. R. K. Ray, J. J. Jonas, M. P. Butronguillen, and J. Savoie, ISIJ Int., 34, 927 (1994). https://doi.org/10.2355/isijinternational.34.927
  60. R. D. K. Misra and J. P. Anderson, Mater. Sci. Technol., 18, 1513 (2002). https://doi.org/10.1179/026708302225007286

Cited by

  1. Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel vol.22, pp.2, 2016, https://doi.org/10.1007/s12540-016-5568-x
  2. 0.15C-0.2Si-0.5Mn 저탄소강의 동적 재결정 거동에 미치는 Nb 첨가와 공정 변수의 영향 vol.29, pp.5, 2015, https://doi.org/10.12656/jksht.2016.29.5.209
  3. 변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향 vol.26, pp.10, 2015, https://doi.org/10.3740/mrsk.2016.26.10.535
  4. 페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동 vol.26, pp.11, 2015, https://doi.org/10.3740/mrsk.2016.26.11.583
  5. Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향 vol.26, pp.11, 2015, https://doi.org/10.3740/mrsk.2016.26.11.590
  6. Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application vol.48, pp.2, 2015, https://doi.org/10.1007/s11661-016-3878-8
  7. Effects of C and Si on strain aging of strain-based API X60 pipeline steels vol.23, pp.3, 2015, https://doi.org/10.1007/s12540-017-6457-7
  8. 미량합금 원소가 첨가된 아공석강의 인장 및 충격 특성 비교 vol.30, pp.1, 2015, https://doi.org/10.12656/jksht.2017.30.1.6
  9. Microstructural Characterization of ULC Steel vol.20, pp.1, 2020, https://doi.org/10.2478/adms-2020-0004