DOI QR코드

DOI QR Code

Effect of Boron on Mechanical Properties of Ti-12.1Mo-1Fe-xB System

Ti-12.1Mo-1Fe-xB 합금의 기계적 특성에 미치는 보론의 영향

  • 안정진 (한국기계연구원 부설 재료연구소) ;
  • 이동근 (순천대학교 재료공학과) ;
  • 임가람 (한국기계연구원 부설 재료연구소) ;
  • 김태용 (한국기계연구원 부설 재료연구소) ;
  • 이용태 (한국기계연구원 부설 재료연구소) ;
  • 윤석영 (부산대학교 재료공학과)
  • Received : 2014.08.26
  • Published : 2015.06.15

Abstract

Beta-type titanium alloys contain high-cost alloy elements, and thus the manufacturing process using them is too expensive. In order to solve these problems, with making a good balance of mechanical properties in the titanium alloy, we added low-cost elements (Fe and Mo) rather than the high-cost beta-stabilizing elements (Nb and Zr). Furthermore, boron was added to the Ti alloy because that containing boron, exhibited greater stiffness and strength, along with good fracture resistance. In order to study phase transformation about these alloys, solution treatment and aging were conducted. The knowledge on the solution treatment of the Ti alloy is important for controlling the microstructure, being the key to enhancing the mechanical properties and nucleation sites. The result shows that ${\beta}$-solution treatment leads to a stable ${\beta}$-matrix and provides the greatest driving force for precipitation. This contributed to good ductility (about 900 MPa of ultimate strength with 25% elongation), in Ti-12.1Mo-1Fe (0A1F). However, Ti-12.1 Mo-1Fe-xB (0A1F-0.05B, 0A1F-0.1B) had more ductility than 0A1F. In the solution-treatmentplus-aging condition, the nano-size ${\omega}$ phase that precipitated at $350-450^{\circ}C$ resulted in great strength (above 1500 MPa with 2% elongation). When aged at $550^{\circ}C$, the 0A1F only precipitated ${\alpha}$-phase, and had ductility of about 1100 MPa with 13% elongation. The specimens to which boron was added, had ${\alpha}$ and ${\omega}$ phases; so 0A1F-xB was more brittle than 0A1F when aged at $550^{\circ}C$. Consequently, the design-alloy exhibited good mechanical properties (i.e. strength and elongation). More detailed investigation is needed to determine its optimal mechanical properties.

Keywords

References

  1. F. H. Froes, J. Min. Met. Mat. Soc. 50, 9, pp. 15 (1998)
  2. C. M. Agrawal, J. Min. Met. Mat. Soc. 50, 1, pp. 31-34 (1998).
  3. Y. T. Lee and Y. T Hyun, J. Kor. Inst. Met. & Mater. 30, 7, 862 (1992).
  4. R. Boyer, G. Welsch, Materials Properties Handbook: Titanium Alloys 2, pp.899-942, ASM International (1994).
  5. P. G. Allen, P. J. Bania, A. J. Hutt, and Y. Combres, 95 Science and Technology, 1680 (1995).
  6. Y. T. Lee, Titanium Handbook, pp.61-128, Steel & Metal News (2009).
  7. C.-L. Li, D.-G. Lee, X.-J. Mi, W.-J. Ye, S.-X. Hui, and Y.-T. Lee, J. Alloy. Compd. 549, 152 (2013). https://doi.org/10.1016/j.jallcom.2012.08.065
  8. C.-L. Li, X.-J. Mi, W.-J. Te, S.-X. Hui, D.-G. Lee, and Y.-T. Lee, Mater. Sci. Eng. A 580, 250 (2013) https://doi.org/10.1016/j.msea.2013.04.118
  9. B. S. Hickman, J. Mater. Sci. 4, 554 (1969). https://doi.org/10.1007/BF00550217
  10. J. M. Silcock, Acta Metall. Mater. 6, 481 (1958). https://doi.org/10.1016/0001-6160(58)90111-1
  11. D. D. Fontaine, Metall. Trans. A 19, 169 (1988). https://doi.org/10.1007/BF02652523
  12. S. Abkowitz, S. M. Abkowitz, H. Fisher, and P. J. Schwartz, J. Min., Met. Mat. Soc. 56, 37 (2004).
  13. T. Saito, J. Min. Met. Mat. Soc. 56, 33 (2004).
  14. M.-S. Baek, D.-J. Yoon, K.-B. Kim, Y.-J. Kim, and B.-I. Kim, Korea J. Met. Mater. 51, 461(2013). https://doi.org/10.3365/KJMM.2013.51.7.461
  15. E. W. Collings, Materials Properties Handbook: Titanium Alloys, 1st ed., American Society for Metals, Materials Park, USA (1994).
  16. M. S. Baek, D. J. Yoon, D. H. Won, and B. I. Kim, Korean J. Met. Mater. 49, 739 (2011).
  17. M. Morinaga, J. I. Saito, and M. Morishita, Light Met. 42, 614 (1992). https://doi.org/10.2464/jilm.42.614
  18. C. F Yolton, F. H. Froes, and R. F Malone, Metall. Trans. A 10, 132 (1979). https://doi.org/10.1007/BF02686421
  19. S. Tamirisakandala, R. B. Bhat, D. B. Miracle, S. Boddapati, R. Bordia, R. Vanover, and V. K. Vasudevan, Scripta Mater. 53, 217 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.038
  20. M. J. Bermingham, S. D. McDonald, K. Nogita, D. H. St. John and M. S. Dargusch, Scripta Mater. 59, 538 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.002
  21. T. W. Duering, G. T Terlinede, and J. C. Williams, Titanium '80 Science & Technology Proceedings of the 4th International Conference on Titanium (Eds. O.Izumi and H. Kimura), pp.1299-1308, Metallurgical Society of AIME, Warrendale (1980).