DOI QR코드

DOI QR Code

Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies

  • Ciechanover, Aaron (Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University) ;
  • Kwon, Yong Tae (Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University)
  • Received : 2014.11.04
  • Accepted : 2014.11.19
  • Published : 2015.03.31

Abstract

Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into ${\beta}$-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

Keywords

References

  1. Ciechanover A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem 2013; 21: 3400-3410. https://doi.org/10.1016/j.bmc.2013.01.056
  2. Sriram SM, Kim BY, Kwon YT. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 2011; 12: 735-747. https://doi.org/10.1038/nrm3217
  3. Tasaki T, Sriram SM, Park KS, Kwon YT. The N-end rule pathway. Annu Rev Biochem 2012; 81: 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
  4. Kim ST, Tasaki T, Zakrzewska A, Yoo YD, Sung KS, Kim BY et al. The N-end rule proteolytic system in autophagy. Autophagy 2013; 9: 1100-1103. https://doi.org/10.4161/auto.24643
  5. Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J et al. Ubiquilin functions in autophagy and is degraded by chaper-one-mediated autophagy. Hum Mol Genet 2010; 19: 3219-3232. https://doi.org/10.1093/hmg/ddq231
  6. Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 2004; 15: 4829-4840. https://doi.org/10.1091/mbc.E04-06-0477
  7. Hariharan N, Zhai P, Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 2011; 14: 2179-2190. https://doi.org/10.1089/ars.2010.3488
  8. Koga H, Cuervo AM. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis 2011; 43: 29-37. https://doi.org/10.1016/j.nbd.2010.07.006
  9. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000; 10: 524-530. https://doi.org/10.1016/S0962-8924(00)01852-3
  10. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 19: 353-356.
  11. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012; 148: 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040
  12. Ward SM, Himmelstein DS, Lancia JK, Binder LI. Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 2012; 40: 667-671. https://doi.org/10.1042/BST20120134
  13. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4: 295-305. https://doi.org/10.1038/nchembio.79
  14. Tsoi H, Lau TC, Tsang SY, Lau KF, Chan HY. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci USA 2012; 109: 13428-13433. https://doi.org/10.1073/pnas.1204089109
  15. Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson's disease. Annu Rev Genomics Hum Genet 2011; 12: 301-325. https://doi.org/10.1146/annurev-genom-082410-101440
  16. Uversky VN. Neuropathology, biochemistry, and biophysics of ${\alpha}$-synuclein aggregation. J Neurochem 2007; 103: 17-37.
  17. Griffith JS. Self-replication and scrapie. Nature 1967; 215: 1043-1044. https://doi.org/10.1038/2151043a0
  18. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216: 136-144. https://doi.org/10.1126/science.6801762
  19. Prusiner SB. Prions. Proc Natl Acad Sci USA 1998; 95: 13363-13383. https://doi.org/10.1073/pnas.95.23.13363
  20. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nature Rev Neurol 2011; 7: 603-615. https://doi.org/10.1038/nrneurol.2011.150
  21. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005; 280: 17294-17300. https://doi.org/10.1074/jbc.M500997200
  22. Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31: 7817-7830. https://doi.org/10.1523/JNEUROSCI.6412-10.2011
  23. Hollenbeck PJ. Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 1993; 121: 305-315. https://doi.org/10.1083/jcb.121.2.305
  24. Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol 2002; 17: 897-908.
  25. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889. https://doi.org/10.1038/nature04724
  26. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22: 132-139. https://doi.org/10.1016/j.ceb.2009.12.004
  27. Keller JN, Huang FF, Markesbery WR. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 2000; 98: 149-156. https://doi.org/10.1016/S0306-4522(00)00067-1
  28. Jung KM, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol 2007; 72: 612-621. https://doi.org/10.1124/mol.107.037796
  29. Tydlacka S, Wang CE, Wang X, Li S, Li XJ. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 2008; 28: 13285-13295. https://doi.org/10.1523/JNEUROSCI.4393-08.2008
  30. Dantuma NP, Lindsten K. Stressing the ubiquitin-proteasome system. Cardiovascular Research 2010; 85: 263-271. https://doi.org/10.1093/cvr/cvp255
  31. Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol Dis 2012; 48: 189-201. https://doi.org/10.1016/j.nbd.2011.12.038
  32. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 2012; 181: 1426-1435. https://doi.org/10.1016/j.ajpath.2012.06.033
  33. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003; 278: 25009-25013. https://doi.org/10.1074/jbc.M300227200
  34. Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet 2008; 17: 170-178. https://doi.org/10.1093/hmg/ddm294
  35. Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 2009; 109: 25-34. https://doi.org/10.1111/j.1471-4159.2009.05906.x
  36. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285: 13107-13120. https://doi.org/10.1074/jbc.M110.100420
  37. Rodriguez-Navarro JA, Cuervo AM. Autophagy and lipids: tightening the knot. Semin Immunopathol 2010; 32: 343-353. https://doi.org/10.1007/s00281-010-0219-7
  38. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-${\beta}$ levels in a mouse model of Alzheimer's disease. PLoS ONE 2010; 5: e9979. https://doi.org/10.1371/journal.pone.0009979
  39. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67: 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  40. Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 2006; 440: 551-555. https://doi.org/10.1038/nature04600
  41. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21: 921-926. https://doi.org/10.1038/nbt849
  42. Hadian K, Griesbach RA, Dornauer S, Wanger TM, Nagel D, Metlitzky M et al. NF-kappaB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-kappaB activation. J Biol Chem 2011; 286: 26107-26117. https://doi.org/10.1074/jbc.M111.233163
  43. Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39: 477-484. https://doi.org/10.1016/j.molcel.2010.07.001
  44. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138: 389-403. https://doi.org/10.1016/j.cell.2009.04.042
  45. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81: 203-229. https://doi.org/10.1146/annurev-biochem-060310-170328
  46. Clague MJ, Urbe S. Ubiquitin: same molecule, different degradation pathways. Cell 2010; 143: 682-685. https://doi.org/10.1016/j.cell.2010.11.012
  47. Hendil KB, Khan S, Tanaka K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem J 1998; 332: 749-754. https://doi.org/10.1042/bj3320749
  48. Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 2000; 275: 14336-14345. https://doi.org/10.1074/jbc.275.19.14336
  49. Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 2008; 9: 679-690. https://doi.org/10.1038/nrm2468
  50. Eisele F, Wolf DH. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 2008; 582: 4143-4146. https://doi.org/10.1016/j.febslet.2008.11.015
  51. Heck JW, Cheung SK, Hampton RY. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci USA 2010; 107: 1106-1111. https://doi.org/10.1073/pnas.0910591107
  52. Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol Biol Cell 2011; 22: 2384-2395. https://doi.org/10.1091/mbc.E11-03-0256
  53. Prasad R, Kawaguchi S, Ng DT. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010; 21: 2117-2127. https://doi.org/10.1091/mbc.E10-02-0111
  54. Fang NN, Ng AH, Measday V, Mayor T. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat Cell Biol 2011; 13: 1344-1352. https://doi.org/10.1038/ncb2343
  55. Connell CM, Shaw BA, Holmes SB, Foster NL. Caregivers' attitudes toward their family members' participation in Alzheimer disease research: implications for recruitment and retention. Alzheimer Dis Assoc Disord 2001; 15: 137-145. https://doi.org/10.1097/00002093-200107000-00005
  56. Hegde AN, Upadhya SC. Role of ubiquitin-proteasome mediated proteolysis in nervous system disease. Biochim Biophys Acta 2011; 1809: 128-140. https://doi.org/10.1016/j.bbagrm.2010.07.006
  57. Dennissen FJ, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 2012; 96: 190-207. https://doi.org/10.1016/j.pneurobio.2012.01.003
  58. Andre R, Tabrizi SJ. Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 2012; 6: 32-36. https://doi.org/10.4161/pri.6.1.18272
  59. Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D. Amyloid -protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 1995; 270: 19702-19708. https://doi.org/10.1074/jbc.270.34.19702
  60. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric ${\alpha}$-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem 2003; 278: 11753-11759. https://doi.org/10.1074/jbc.M208641200
  61. Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB et al. Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 2004; 279: 12924-12934. https://doi.org/10.1074/jbc.M306390200
  62. Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H et al. Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 2007; 26: 175-188. https://doi.org/10.1016/j.molcel.2007.04.001
  63. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimerrelated PS1 mutations. Cell 2010; 141: 1146-1158. https://doi.org/10.1016/j.cell.2010.05.008
  64. Nixon RA, Yang DS, Lee JH. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 2008; 4: 590-599. https://doi.org/10.4161/auto.6259
  65. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22: 407-417. https://doi.org/10.1016/j.tcb.2012.05.006
  66. Kaushik S, Massey AC, Mizushima N, Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 2008; 19: 2179-2192. https://doi.org/10.1091/mbc.E07-11-1155
  67. Deretic V. Autophagy in infection. Curr Opin Cell Biol 2010; 22: 252-262. https://doi.org/10.1016/j.ceb.2009.12.009
  68. Ichimura Y, Kominami E, Tanaka K, Komatsu M. Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 2008; 4: 1063-1066. https://doi.org/10.4161/auto.6826
  69. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283: 22847-22857. https://doi.org/10.1074/jbc.M802182200
  70. Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy. Semin Immunopathol 2010; 32: 431-436. https://doi.org/10.1007/s00281-010-0220-1
  71. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38: 265-279. https://doi.org/10.1016/j.molcel.2010.04.007
  72. Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J Cell Biol 2010; 191: 537-552. https://doi.org/10.1083/jcb.201005012
  73. Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 2011; 68: 1440-1446. https://doi.org/10.1001/archneurol.2011.250
  74. Deretic V. A master conductor for aggregate clearance by autophagy. Dev Cell 2010; 18: 694-696. https://doi.org/10.1016/j.devcel.2010.04.009
  75. Johnson CW, Melia TJ, Yamamoto A. Modulating macroautophagy: a neuronal perspective. Future Med Chem 2012; 4: 1715-1731. https://doi.org/10.4155/fmc.12.112
  76. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101-1111. https://doi.org/10.1091/mbc.e03-09-0704
  77. Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453: 325-342. https://doi.org/10.1016/S0076-6879(08)04016-0
  78. Liu XD, Ko S, Xu Y, Fattah EA, Xiang Q, Jagannath C et al. Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress. J Biol Chem 2012; 287: 19687-19698. https://doi.org/10.1074/jbc.M112.350934
  79. Wong ES, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL et al. Autophagy mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 2008; 17: 2570-2582. https://doi.org/10.1093/hmg/ddn157
  80. Kirilyuk A, Shimoji M, Catania J, Sahu G, Pattabiraman N, Giordano A et al. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One 2012; 7: e48243. https://doi.org/10.1371/journal.pone.0048243
  81. Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998; 143: 1883-1898. https://doi.org/10.1083/jcb.143.7.1883
  82. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009; 323: 124-127. https://doi.org/10.1126/science.1166088
  83. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 2010; 67: 1464-1472.
  84. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 2008; 14: 959-965. https://doi.org/10.1038/nm.1851
  85. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 2006; 281: 14474-14485. https://doi.org/10.1074/jbc.M600364200
  86. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biology 2010; 8: e1000450. https://doi.org/10.1371/journal.pbio.1000450
  87. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 2009; 18: 4153-4170. https://doi.org/10.1093/hmg/ddp367
  88. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 2013; 16: 394-406. https://doi.org/10.1038/nn.3350
  89. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant ${\alpha}$-synuclein by chaperone-mediated autophagy. Science 2004; 305: 1292-1295. https://doi.org/10.1126/science.1101738
  90. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 2011; 44: 279-289. https://doi.org/10.1016/j.molcel.2011.07.039
  91. Jiang T, Yu JT, Tian Y, Tan L. Epidemiology and etiology of Alzheimer's disease: from genetic to non-genetic factors. Curr Alzheimer Res 2013; 10: 852-867. https://doi.org/10.2174/15672050113109990155
  92. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003; 38: 9-12. https://doi.org/10.1016/S0896-6273(03)00205-8
  93. Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H et al. CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 2007; 16: 848-864. https://doi.org/10.1093/hmg/ddm030
  94. Kaneko M, Koike H, Saito R, Kitamura Y, Okuma Y, Nomura Y. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci 2010; 30: 3924-3932. https://doi.org/10.1523/JNEUROSCI.2422-09.2010
  95. Atkin G, Hunt J, Minakawa E, Sharkey L, Tipper N, Tennant W et al. F-box only protein 2 (Fbxo2) regulates amyloid precursor levels and processing. J Biol Chem 2014; 289: 7038-7048. https://doi.org/10.1074/jbc.M113.515056
  96. El Ayadi A, Stieren ES, Barral JM, Boehning D. Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688. Proc Natl Acad Sci USA 2012; 109: 13416-13421. https://doi.org/10.1073/pnas.1206786109
  97. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283: 29615-29619. https://doi.org/10.1074/jbc.R800019200
  98. Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 1987; 84: 3033-3036. https://doi.org/10.1073/pnas.84.9.3033
  99. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA et al. The autophagy related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008; 118: 2190-2199.
  100. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884. https://doi.org/10.1038/nature04723
  101. Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 2010; 285: 3499-3509. https://doi.org/10.1074/jbc.M109.072389
  102. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A et al. Extensive involvement of autophagy in Alzheimer disease: an immunoelectron microscopy study. J Neuropathol Exp Neurol 2005; 64: 113-122. https://doi.org/10.1093/jnen/64.2.113
  103. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 2008; 28: 6926-6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008
  104. Nixon RA, Yang DS. Autophagy failure in Alzheimer's diseasedlocating the primary defect. Neurobiol Dis 2011; 43: 38-45. https://doi.org/10.1016/j.nbd.2011.01.021
  105. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature Rev Mol Cell Biol 2007; 8: 101-112.
  106. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR et al. Identification of oligomers at early stages of tau aggregation in Alzheimer's disease. FASEB J 2012; 26: 1946-1959. https://doi.org/10.1096/fj.11-199851
  107. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci USA 2003; 100: 10032-10037. https://doi.org/10.1073/pnas.1630428100
  108. Canu N, Dus L, Barbato C, Ciotti MT, Brancolini C, Rinaldi AM et al. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 1998; 18: 7061-7074. https://doi.org/10.1523/JNEUROSCI.18-18-07061.1998
  109. Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM et al. A genomic screen for modifiers of tauopathy identifies puromycinsensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 2006; 51: 549-560. https://doi.org/10.1016/j.neuron.2006.07.019
  110. Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z et al. Inducible expression of tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 2006; 281: 1205-1214. https://doi.org/10.1074/jbc.M507753200
  111. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 2004; 13: 703-714. https://doi.org/10.1093/hmg/ddh083
  112. Scaglione KM, Basrur V, Ashraf NS, Konen JR, Elenitoba-Johnson KS, Todi SV et al. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J Biol Chem 2013; 288: 18784-18788. https://doi.org/10.1074/jbc.C113.477596
  113. Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitinproteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105: 49-59. https://doi.org/10.1016/j.pneurobio.2013.03.001
  114. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008; 27: 1119-1130. https://doi.org/10.1111/j.1460-9568.2008.06084.x
  115. Dall'Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB et al. The phospholipase D1 pathway modulates macroautophagy. Nat Commun 2010; 1: 142. https://doi.org/10.1038/ncomms1144
  116. Metcalfe MJ, Huang Q, Figueiredo-Pereira ME. Coordination between proteasome impairment and caspase activation leading to TAU pathology: neuroprotection by cAMP. Cell Death Dis 2012; 3: e326. https://doi.org/10.1038/cddis.2012.70
  117. Rodriguez-Martin T, Cuchillo-Ibanez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 2013; 34: 2146-2157. https://doi.org/10.1016/j.neurobiolaging.2013.03.015
  118. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA et al. The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14: 467-475. https://doi.org/10.1016/0896-6273(95)90302-X
  119. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al. Mutation in the ${\alpha}$-synuclein gene identified in families with Parkinson's disease. Science 1997; 276: 2045-2047. https://doi.org/10.1126/science.276.5321.2045
  120. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S et al. Ala30Pro mutation in the gene encoding ${\alpha}$-synuclein in Parkinson's disease. Nat Genet 1998; 18: 106-108. https://doi.org/10.1038/ng0298-106
  121. Singleton AB, Farrer M, Johnson J, Singleton A, Haque S, Kachergus J et al. ${\alpha}$-Synuclein locus triplication causes Parkinson's disease. Science 2003; 302: 841. https://doi.org/10.1126/science.1090278
  122. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. ${\alpha}$-Synuclein in Lewy bodies. Nature 1997; 388: 839-840. https://doi.org/10.1038/42166
  123. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM et al. Aggregation of ${\alpha}$-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 1998; 152: 879-884.
  124. Seidel K, Schols L, Nuber S, Petrasch-Parwez E, Gierga K, Wszolek Z et al. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol 2010; 67: 684-689.
  125. Liu CW, Corboy MJ, DeMartino GN, Thomas PJ. Endoproteolytic activity of the proteasome. Science 2003; 299: 408-411. https://doi.org/10.1126/science.1079293
  126. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338: 949-953. https://doi.org/10.1126/science.1227157
  127. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM. Degradation of alpha-synuclein by proteasome. J Biol Chem 1999; 274: 33855-33858. https://doi.org/10.1074/jbc.274.48.33855
  128. Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000; 275: 35661-35664. https://doi.org/10.1074/jbc.C000447200
  129. McLean PJ, Kawamata H, Hyman BT. Alpha-synucleinenhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 2001; 104: 901-912. https://doi.org/10.1016/S0306-4522(01)00113-0
  130. Tofaris GK, Layfield R, Spillantini MG. Alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 2001; 509: 22-26. https://doi.org/10.1016/S0014-5793(01)03115-5
  131. Nakajima T, Takauchi S, Ohara K, Kokai M, Nishii R, Maeda S et al. Alpha-synuclein-positive structures induced in leupeptin-infused rats. Brain Res 2005; 1040: 73-80. https://doi.org/10.1016/j.brainres.2005.01.099
  132. Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M et al. Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin independent manner. J Biol Chem 2010; 285: 40732-40744. https://doi.org/10.1074/jbc.M110.141952
  133. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 2005; 280: 23727-23734. https://doi.org/10.1074/jbc.M503326200
  134. Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D et al. Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease. Proc Natl Acad Sci USA 2004; 101: 5500-5505. https://doi.org/10.1073/pnas.0401081101
  135. Lee JT, Wheeler TC, Li L, Chin LS. Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum Mol Genet 2008; 17: 906-917.
  136. Nair VD, McNaught KS, Gonzalez-Maeso J, Sealfon SC, Olanow CW. p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 2006; 281: 39550-39560. https://doi.org/10.1074/jbc.M603950200
  137. Mei J, Niu C. Alterations of Hrd1 expression in various encephalic regional neurons in 6-OHDA model of Parkinson's disease. Neurosci Lett 2010; 474: 63-68. https://doi.org/10.1016/j.neulet.2010.02.033
  138. Tofaris GK, Kim HT, Hourez R, Jung JW, Kim KP, Goldberg AL. Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc Natl Acad Sci USA 2011; 108: 17004-17009. https://doi.org/10.1073/pnas.1109356108
  139. Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS et al. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA 2006; 103: 4675-4680. https://doi.org/10.1073/pnas.0510403103
  140. Cartier AE, Ubhi K, Spencer B, Vazquez-Roque RA, Kosberg KA, Fourgeaud L et al. Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy. PLoS One 2012; 7: e34713. https://doi.org/10.1371/journal.pone.0034713
  141. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr.. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 2002; 111: 209-218. https://doi.org/10.1016/S0092-8674(02)01012-7
  142. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and lewy-like inclusions resembling human pale bodies. J Neurosci 2008; 28: 8189-8198. https://doi.org/10.1523/JNEUROSCI.2218-08.2008
  143. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett 2001; 297: 191-194. https://doi.org/10.1016/S0304-3940(00)01701-8
  144. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; 283: 23542-23556. https://doi.org/10.1074/jbc.M801992200
  145. Malkus KA, Ischiropoulos H. Regional deficiencies in chaperone-mediated autophagy underlie alpha-synuclein aggregation and neurodegeneration. Neurobiol Dis 2012; 46: 732-744. https://doi.org/10.1016/j.nbd.2012.03.017
  146. Shen YF, Tang Y, Zhang XJ, Huang KX, Le WD. Adaptive changes in autophagy after UPS impairment in Parkinson's disease. Acta Pharmacol Sin 2013; 34: 667-673. https://doi.org/10.1038/aps.2012.203
  147. Sevlever D, Jiang P, Yen SH. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008; 47: 9678-9687. https://doi.org/10.1021/bi800699v
  148. Cullen V, Lindfors M, Ng J, Paetau A, Swinton E, Kolodziej P et al. Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol Brain 2009; 2: 5. https://doi.org/10.1186/1756-6606-2-5
  149. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 2001; 21: 8053-8061. https://doi.org/10.1523/JNEUROSCI.21-20-08053.2001
  150. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J Neurosci 2009; 29: 13578-13588. https://doi.org/10.1523/JNEUROSCI.4390-09.2009
  151. Munoz-Sanjuan I, Bates GP. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invest 2011; 121: 476-483. https://doi.org/10.1172/JCI45364
  152. Walker FO. Huntington's disease. Lancet 2007; 369: 218-228. https://doi.org/10.1016/S0140-6736(07)60111-1
  153. Arrasate M, Finkbeiner S. Protein aggregates in Huntington's disease. Exp Neurol 2012; 238: 1-11. https://doi.org/10.1016/j.expneurol.2011.12.013
  154. Warby SC, Visscher H, Collins JA, Doty CN, Carter C, Butland SL et al. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet 2011; 19: 561-566. https://doi.org/10.1038/ejhg.2010.229
  155. Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008; 31: 521-528. https://doi.org/10.1016/j.tins.2008.07.004
  156. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev Neurosci 2003; 4: 49-60. https://doi.org/10.1038/nrn1007
  157. Miller J, Arrasate M, Brooks E, Libeu CP, Legleiter J, Hatters D et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol 2011; 7: 925-934. https://doi.org/10.1038/nchembio.694
  158. Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 2011; 18: 328-336. https://doi.org/10.1038/nsmb.1992
  159. Qi L, Zhang XD, Wu JC, Lin F, Wang J, DiFiglia M et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE 2012; 7: e46834. https://doi.org/10.1371/journal.pone.0046834
  160. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277: 1990-1993. https://doi.org/10.1126/science.277.5334.1990
  161. Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, Shaler TA et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J Cell Biol 2012; 196: 573-587. https://doi.org/10.1083/jcb.201110093
  162. Jeong H, Then F, Melia TJ Jr., Mazzulli JR, Cui L, Savas JN et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009; 137: 60-72. https://doi.org/10.1016/j.cell.2009.03.018
  163. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 2010; 13: 567-576. https://doi.org/10.1038/nn.2528
  164. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13: 805-811. https://doi.org/10.1038/nn.2575
  165. Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW et al. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 2012; 21: 101-114. https://doi.org/10.1093/hmg/ddr445
  166. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36: 585-595. https://doi.org/10.1038/ng1362
  167. Kovacs GG, Budka H. Prion diseases: from protein to cell pathology. Am J Pathol 2008; 172: 555-565. https://doi.org/10.2353/ajpath.2008.070442
  168. Ma J, Wang F. Prion disease and the 'protein-only hypothesis'. Essays Biochem 2014; 56: 181-191. https://doi.org/10.1042/bse0560181
  169. Wells GA, Scott AC, Johnson CT, Gunning RF, Hancock RD, Jeffrey M et al. A novel progressive spongiform encephalopathy in cattle. Vet Rec 1987; 121: 419-420. https://doi.org/10.1136/vr.121.18.419
  170. Williams ES, Young S. Spongiform encephalopathy of Rocky Mountain elk. J Wildl Dis 1982; 18: 465-471. https://doi.org/10.7589/0090-3558-18.4.465
  171. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 1991; 129: 233-236. https://doi.org/10.1136/vr.129.11.233
  172. Gajdusek DC, Gibbs CJ, Alpers M. Experimental transmission of a Kurulike syndrome to chimpanzees. Nature 1966; 209: 794-796. https://doi.org/10.1038/209794a0
  173. Gibbs CJ Jr., Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM et al. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 1968; 161: 388-389. https://doi.org/10.1126/science.161.3839.388
  174. Masters CL, Gajdusek DC, Gibbs CJ Jr.. Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Straussler syndrome with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain 1981; 104: 559-588. https://doi.org/10.1093/brain/104.3.559
  175. Lugaresi E, Medori R, Montagna P, Baruzzi A, Cortelli P, Lugaresi A et al. Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N Engl J Med 1986; 315: 997-1003. https://doi.org/10.1056/NEJM198610163151605
  176. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ et al. Synthetic mammalian prions. Science 2004; 305: 673-676. https://doi.org/10.1126/science.1100195
  177. Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell 2005; 121: 195-206. https://doi.org/10.1016/j.cell.2005.02.011
  178. Wang F, Wang X, Yuan CG, Ma J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010; 327: 1132-1135. https://doi.org/10.1126/science.1183748
  179. Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001; 411: 810-813. https://doi.org/10.1038/35081095
  180. Soto C. Transmissible proteins: expanding the prion heresy. Cell 2012; 149: 968-977. https://doi.org/10.1016/j.cell.2012.05.007
  181. Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004; 304: 1793-1797. https://doi.org/10.1126/science.1098007
  182. DebBurman SK, Raymond GJ, Caughey B, Lindquist S. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA 1997; 94: 13938-13943. https://doi.org/10.1073/pnas.94.25.13938
  183. Wilkins S, Choglay AA, Chapple JP, van der Spuy J, Rhie A, Birkett CR et al. The binding of the molecular chaperone Hsc70 to the prion protein PrP is modulated by pH and copper. Int J Biochem Cell Biol 2010; 42: 1226-1232. https://doi.org/10.1016/j.biocel.2010.04.013
  184. Forster A, Masters EI, Whitby FG, Robinson H, Hill CP. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 2005; 18: 589-599. https://doi.org/10.1016/j.molcel.2005.04.016
  185. Deriziotis P, Andre R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M et al. Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J 2011; 30: 3065-3077. https://doi.org/10.1038/emboj.2011.224
  186. Boellaard JW, Kao M, Schlote W, Diringer H. Neuronal autophagy in experimental scrapie. Acta Neuropathol 1991; 82: 225-228. https://doi.org/10.1007/BF00294449
  187. Sikorska B, Liberski PP, Brown P. Neuronal autophagy and aggresomes constitute a consistent part of neurodegeneration in experimental scrapie. Folia Neuropathol 2007; 45: 170-178.
  188. Mishra RS, Bose S, Gu Y, Li R, Singh N. Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders. J Alzheimers Dis 2003; 5: 15-23. https://doi.org/10.3233/JAD-2003-5103
  189. Heitz S, Grant NJ, Bailly Y. Doppel induces autophagic stress in prion protein-deficient Purkinje cells. Autophagy 2009; 5: 422-424. https://doi.org/10.4161/auto.5.3.7882
  190. Heiseke A, Aguib Y, Schatzl HM. Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol 2010; 12: 87-97.
  191. Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM et al. Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 2009; 5: 361-369. https://doi.org/10.4161/auto.5.3.7662
  192. Moughamian AJ, Holzbaur EL. Dynactin is required for transport initiation from the distal axon. Neuron 2012; 74: 331-343. https://doi.org/10.1016/j.neuron.2012.02.025
  193. Ikenaka K, Kawai K, Katsuno M, Huang Z, Jiang YM, Iguchi Y et al. dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. PLoS One 2013; 8: e54511. https://doi.org/10.1371/journal.pone.0054511
  194. Fecto F, Siddique T. UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Muscle Nerve 2012; 45: 157-162. https://doi.org/10.1002/mus.23278
  195. Guo Y, Li C, Wu D, Wu S, Yang C, Liu Y et al. Ultrastructural diversity of inclusions and aggregations in the lumbar spinal cord of SOD1-G93A transgenic mice. Brain Res 2010; 1353: 234-244. https://doi.org/10.1016/j.brainres.2010.07.025
  196. Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler 2009; 10: 1-14. https://doi.org/10.1080/17482960802585469
  197. Buratti E, Baralle FE. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 2008; 13: 867-878. https://doi.org/10.2741/2727
  198. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 2009; 284: 20329-20339. https://doi.org/10.1074/jbc.M109.010264
  199. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997; 18: 327-338. https://doi.org/10.1016/S0896-6273(00)80272-X
  200. Bendotti C, Atzori C, Piva R, Tortarolo M, Strong MJ, Debiasi S et al. Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 2004; 63: 113-119. https://doi.org/10.1093/jnen/63.2.113
  201. Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M, Martin JE et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 1991; 114: 775-788. https://doi.org/10.1093/brain/114.2.775
  202. Mendonca DM, Chimelli L, Martinez AM. Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis. Neurosci Lett 2006; 404: 315-319. https://doi.org/10.1016/j.neulet.2006.06.009
  203. Sasaki S. Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2010; 69: 346-355. https://doi.org/10.1097/NEN.0b013e3181d44992
  204. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 2001; 8: 933-941. https://doi.org/10.1006/nbdi.2001.0443
  205. Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 2007; 1167: 112-117. https://doi.org/10.1016/j.brainres.2007.06.045
  206. Di Noto L, Whitson LJ, Cao X, Hart PJ, Levine RL. Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J Biol Chem 2005; 280: 39907-39913. https://doi.org/10.1074/jbc.M506247200
  207. Hoffman EK, Wilcox HM, Scott RW, Siman R. Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J Neurol Sci 1996; 139: 15-20. https://doi.org/10.1016/0022-510X(96)00031-7
  208. Hyun DH, Lee M, Halliwell B, Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 2003; 86: 363-373.
  209. Puttaparthi K, Wojcik C, Rajendran B, DeMartino GN, Elliott JL. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes 1. J Neurochem 2003; 87: 851-860.
  210. Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E et al. Alteration of protein folding and degradation in motor neuron diseases: implications and protective functions of small heat shock proteins. Prog Neurobiol 2012; 97: 83-100. https://doi.org/10.1016/j.pneurobio.2011.09.009
  211. Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Naujock N et al. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20110409. https://doi.org/10.1098/rstb.2011.0409
  212. Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X et al. Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 2011; 7: 412-425. https://doi.org/10.4161/auto.7.4.14541
  213. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 2010; 19: 3440-3456. https://doi.org/10.1093/hmg/ddq257
  214. Sarkar S, Rubinsztein DC. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J 2008; 275: 4263-4270. https://doi.org/10.1111/j.1742-4658.2008.06562.x
  215. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002; 11: 1107-1117. https://doi.org/10.1093/hmg/11.9.1107
  216. Domanskyi A, Geissler C, Vinnikov IA, Alter H, Schober A, Vogt MA et al. Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB J 2011; 25: 2898-2910. https://doi.org/10.1096/fj.11-181958
  217. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadig O et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010; 19: 2144-2153. https://doi.org/10.1093/hmg/ddq093
  218. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101-1111. https://doi.org/10.1083/jcb.200504035
  219. Feng HL, Leng Y, Ma CH, Zhang J, Ren M, Chuang DM. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 2008; 155: 567-572. https://doi.org/10.1016/j.neuroscience.2008.06.040
  220. Pizzasegola C, Caron I, Daleno C, Ronchi A, Minoia C, Carri MT et al. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph Lateral Scler 2009; 10: 221-228. https://doi.org/10.1080/17482960902803440
  221. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant Huntingtin and alpha-synuclein. J Biol Chem 2007; 282: 5641-5652. https://doi.org/10.1074/jbc.M609532200
  222. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10: 148-154. https://doi.org/10.1038/nm985
  223. Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D et al. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 2011; 6: e21226. https://doi.org/10.1371/journal.pone.0021226
  224. Magnaudeix A, Wilson CM, Page G, Bauvy C, Codogno P, Leveque P et al. PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol Aging 2013; 34: 770-790. https://doi.org/10.1016/j.neurobiolaging.2012.06.026
  225. Jia H, Kast RJ, Steffan JS, Thomas EA. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum Mol Genet 2012; 21: 5280-5293. https://doi.org/10.1093/hmg/dds379
  226. Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2014; 71: 16-24. https://doi.org/10.1016/j.yjmcc.2013.11.006
  227. Chesser AS, Pritchard SM, Johnson GW. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013; 4: 1-12.
  228. Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 2013; 47: 537-551. https://doi.org/10.1007/s12035-012-8341-2

Cited by

  1. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease vol.51, pp.70, 2015, https://doi.org/10.1039/c5cc05264e
  2. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms vol.2, pp.None, 2015, https://doi.org/10.3389/fmolb.2015.00057
  3. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad vol.9, pp.None, 2015, https://doi.org/10.3389/fncel.2015.00448
  4. Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer’s disease vol.8, pp.None, 2015, https://doi.org/10.3389/fnmol.2015.00047
  5. Differential autophagic responses to nano-sized materials vol.36, pp.None, 2015, https://doi.org/10.1016/j.copbio.2015.08.016
  6. Ciliary/Flagellar Protein Ubiquitination vol.4, pp.3, 2015, https://doi.org/10.3390/cells4030474
  7. LRRK2 and ubiquitination: implications for kinase inhibitor therapy vol.470, pp.3, 2015, https://doi.org/10.1042/bj20150785
  8. Therapies for Parkinson’s diseases: alternatives to current pharmacological interventions vol.123, pp.11, 2015, https://doi.org/10.1007/s00702-016-1603-9
  9. The Role of the Protein Quality Control System in SBMA vol.58, pp.3, 2015, https://doi.org/10.1007/s12031-015-0675-6
  10. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells vol.58, pp.4, 2015, https://doi.org/10.1007/s12031-015-0685-4
  11. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes vol.12, pp.10, 2015, https://doi.org/10.1080/15548627.2016.1208889
  12. Alpha-Synuclein in Parkinson's Disease: From Pathogenetic Dysfunction to Potential Clinical Application vol.2016, pp.None, 2015, https://doi.org/10.1155/2016/1720621
  13. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases? vol.5, pp.None, 2015, https://doi.org/10.12688/f1000research.7800.2
  14. Insight into the ERVK Integrase – Propensity for DNA Damage vol.7, pp.None, 2015, https://doi.org/10.3389/fmicb.2016.01941
  15. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury vol.9, pp.None, 2016, https://doi.org/10.3389/fnmol.2016.00004
  16. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1 vol.5, pp.None, 2015, https://doi.org/10.7554/elife.17721
  17. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases vol.6, pp.None, 2015, https://doi.org/10.1038/srep22827
  18. Effects of Cellular Pathway Disturbances on Misfolded Superoxide Dismutase-1 in Fibroblasts Derived from ALS Patients vol.11, pp.2, 2015, https://doi.org/10.1371/journal.pone.0150133
  19. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases vol.52, pp.32, 2015, https://doi.org/10.1039/c6cc01564f
  20. Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson´s Disease vol.14, pp.3, 2015, https://doi.org/10.2174/1570159x13666151030103027
  21. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture vol.26, pp.6, 2015, https://doi.org/10.1093/cercor/bhv084
  22. Utilization of stem cells to model Parkinson's disease - current state and future challenges vol.11, pp.2, 2015, https://doi.org/10.2217/fnl.16.7
  23. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson's Disease vol.14, pp.4, 2015, https://doi.org/10.2174/1570159x14666151120123025
  24. New MAPS for misfolded proteins vol.18, pp.7, 2016, https://doi.org/10.1038/ncb3381
  25. In vivo aspects of protein folding and quality control vol.353, pp.6294, 2015, https://doi.org/10.1126/science.aac4354
  26. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis vol.14, pp.7, 2016, https://doi.org/10.1371/journal.pbio.1002507
  27. USP14 regulates autophagy by suppressing K63 ubiquitination of Beclin 1 vol.30, pp.15, 2016, https://doi.org/10.1101/gad.285122.116
  28. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates vol.509, pp.None, 2016, https://doi.org/10.1016/j.ab.2016.05.026
  29. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity vol.7, pp.9, 2015, https://doi.org/10.1021/acschemneuro.6b00175
  30. A Highly Conserved Residue in HIV-1 Nef Alpha Helix 2 Modulates Protein Expression vol.1, pp.6, 2016, https://doi.org/10.1128/msphere.00288-16
  31. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance vol.63, pp.6, 2015, https://doi.org/10.1007/s00294-017-0708-5
  32. Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? vol.30, pp.1, 2015, https://doi.org/10.1007/s10534-016-9981-x
  33. A Therapeutic Target for Inhibition of Neurodegeneration: Autophagy vol.47, pp.9, 2015, https://doi.org/10.1007/s11055-017-0519-7
  34. SIRT1 Overexpression in Mouse Hippocampus Induces Cognitive Enhancement Through Proteostatic and Neurotrophic Mechanisms vol.54, pp.7, 2015, https://doi.org/10.1007/s12035-016-0087-9
  35. Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases vol.13, pp.8, 2015, https://doi.org/10.1080/15548627.2017.1308985
  36. Ageing as a risk factor for ALS/FTD vol.26, pp.2, 2017, https://doi.org/10.1093/hmg/ddx247
  37. Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3-mediated cell survival by sequestration into the JUNQ compartment vol.26, pp.18, 2015, https://doi.org/10.1093/hmg/ddx250
  38. Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury vol.12, pp.None, 2015, https://doi.org/10.1186/s13024-017-0163-2
  39. Recent insights on principles of synaptic protein degradation vol.6, pp.None, 2015, https://doi.org/10.12688/f1000research.10599.1
  40. Low Erythrocyte Levels of Proteasome and Acyl-Peptide Hydrolase (APEH) Activities in Alzheimer’s Disease: A Sign of Defective Proteostasis? vol.60, pp.3, 2017, https://doi.org/10.3233/jad-170389
  41. Cellular Regulation of Amyloid Formation in Aging and Disease vol.11, pp.None, 2015, https://doi.org/10.3389/fnins.2017.00064
  42. Protein Quality Control by Molecular Chaperones in Neurodegeneration vol.11, pp.None, 2015, https://doi.org/10.3389/fnins.2017.00185
  43. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum vol.10, pp.None, 2015, https://doi.org/10.3389/fnmol.2017.00119
  44. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? vol.10, pp.None, 2015, https://doi.org/10.3389/fnmol.2017.00123
  45. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72 vol.10, pp.None, 2015, https://doi.org/10.3389/fnmol.2017.00170
  46. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases vol.10, pp.None, 2015, https://doi.org/10.3389/fnmol.2017.00176
  47. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease vol.10, pp.None, 2015, https://doi.org/10.3389/fnmol.2017.00177
  48. The Effect of Polyphenols on Protein Degradation Pathways: Implications for Neuroprotection vol.22, pp.1, 2015, https://doi.org/10.3390/molecules22010159
  49. The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond vol.7, pp.None, 2015, https://doi.org/10.3389/fonc.2017.00159
  50. Neurodegeneration and RNA-binding proteins : Neurodegeneration and RNA-binding proteins vol.8, pp.2, 2015, https://doi.org/10.1002/wrna.1394
  51. A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation vol.26, pp.10, 2015, https://doi.org/10.1093/hmg/ddx096
  52. Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial) vol.7, pp.8, 2015, https://doi.org/10.1136/bmjopen-2016-015434
  53. Assessing Autophagy in Sciatic Nerves of a Rat Model that Develops Inflammatory Autoimmune Peripheral Neuropathies vol.6, pp.3, 2015, https://doi.org/10.3390/cells6030030
  54. Small Molecule Enhancement of 20S Proteasome Activity Targets Intrinsically Disordered Proteins vol.12, pp.9, 2017, https://doi.org/10.1021/acschembio.7b00489
  55. Ageing and hypoxia cause protein aggregation in mitochondria vol.24, pp.10, 2015, https://doi.org/10.1038/cdd.2017.101
  56. β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101692
  57. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System vol.18, pp.11, 2015, https://doi.org/10.3390/ijms18112394
  58. Amyloidogenesis of Tau protein : Tau Aggregation vol.26, pp.11, 2015, https://doi.org/10.1002/pro.3275
  59. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis vol.8, pp.1, 2015, https://doi.org/10.1038/s41467-017-00085-7
  60. Protein misfolding in neurodegenerative diseases: implications and strategies vol.6, pp.1, 2015, https://doi.org/10.1186/s40035-017-0077-5
  61. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments vol.6, pp.1, 2015, https://doi.org/10.1186/s40035-017-0099-z
  62. Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans vol.11, pp.1, 2015, https://doi.org/10.1186/s40246-017-0108-4
  63. Increasing the Unneddylated Cullin1 Portion Rescues the csn Phenotypes by Stabilizing Adaptor Modules To Drive SCF Assembly vol.37, pp.23, 2015, https://doi.org/10.1128/mcb.00109-17
  64. Lanosterol Suppresses the Aggregation and Cytotoxicity of Misfolded Proteins Linked with Neurodegenerative Diseases vol.55, pp.2, 2015, https://doi.org/10.1007/s12035-016-0377-2
  65. MicroRNA Profiling in Aging Brain of PSEN1/PSEN2 Double Knockout Mice vol.55, pp.6, 2015, https://doi.org/10.1007/s12035-017-0753-6
  66. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration vol.55, pp.8, 2015, https://doi.org/10.1007/s12035-017-0856-0
  67. Activating Autophagy as a Therapeutic Strategy for Parkinson’s Disease vol.32, pp.1, 2015, https://doi.org/10.1007/s40263-018-0497-5
  68. Targeting Chaperone-Mediated Autophagy for Disease Therapy vol.4, pp.3, 2018, https://doi.org/10.1007/s40495-018-0138-1
  69. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation vol.29, pp.1, 2015, https://doi.org/10.1089/ars.2017.7271
  70. Dysfunction of different cellular degradation pathways contributes to specific β‐amyloid42‐induced pathologies vol.32, pp.3, 2015, https://doi.org/10.1096/fj.201700199rr
  71. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1‐G93A mouse model vol.24, pp.12, 2015, https://doi.org/10.1111/cns.12855
  72. Protein Quality Control Degradation in the Nucleus vol.87, pp.None, 2015, https://doi.org/10.1146/annurev-biochem-062917-012730
  73. Preventing P-gp Ubiquitination Lowers Aβ Brain Levels in an Alzheimer’s Disease Mouse Model vol.10, pp.None, 2015, https://doi.org/10.3389/fnagi.2018.00186
  74. Interplay Between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer’s Disease vol.12, pp.None, 2015, https://doi.org/10.3389/fncel.2018.00126
  75. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model vol.12, pp.None, 2015, https://doi.org/10.3389/fncel.2018.00487
  76. Dysfunction of Protein Quality Control in Parkinsonism–Dementia Complex of Guam vol.9, pp.None, 2018, https://doi.org/10.3389/fneur.2018.00173
  77. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome vol.12, pp.None, 2015, https://doi.org/10.3389/fnins.2018.00339
  78. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors vol.12, pp.None, 2015, https://doi.org/10.3389/fnins.2018.00612
  79. Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders vol.299, pp.1, 2015, https://doi.org/10.1016/j.expneurol.2017.10.017
  80. ATM directs DNA damage responses and proteostasis via genetically separable pathways vol.11, pp.512, 2015, https://doi.org/10.1126/scisignal.aan5598
  81. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: From Molecular Bases to Pharmacological Interventions vol.19, pp.1, 2015, https://doi.org/10.3390/ijms19010325
  82. Cereblon suppresses the formation of pathogenic protein aggregates in a p62-dependent manner vol.27, pp.4, 2015, https://doi.org/10.1093/hmg/ddx433
  83. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis vol.115, pp.12, 2015, https://doi.org/10.1073/pnas.1719110115
  84. Proteomic approaches to identify blood-based biomarkers for depression and bipolar disorders vol.15, pp.4, 2015, https://doi.org/10.1080/14789450.2018.1444483
  85. Proteomic profiling of VCP substrates links VCP to K6‐linked ubiquitylation and c‐Myc function vol.19, pp.4, 2015, https://doi.org/10.15252/embr.201744754
  86. Amyloid assembly and disassembly vol.131, pp.8, 2015, https://doi.org/10.1242/jcs.189928
  87. PEX5 regulates autophagy via the mTORC1-TFEB axis during starvation vol.50, pp.4, 2015, https://doi.org/10.1038/s12276-017-0007-8
  88. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities vol.39, pp.5, 2015, https://doi.org/10.1038/aps.2018.11
  89. Pathways to neurodegeneration: lessons learnt from unbiased genetic screens in Drosophila vol.97, pp.3, 2015, https://doi.org/10.1007/s12041-018-0954-4
  90. Glycotoxins: Dietary and Metabolic Origins; Possible Amelioration of Neurotoxicity by Carnosine, with Special Reference to Parkinson’s Disease vol.34, pp.1, 2015, https://doi.org/10.1007/s12640-018-9867-5
  91. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing vol.17, pp.9, 2015, https://doi.org/10.1038/nrd.2018.109
  92. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome vol.131, pp.17, 2015, https://doi.org/10.1242/jcs.217646
  93. GLP-1 Analogue Liraglutide Attenuates Mutant Huntingtin-Induced Neurotoxicity by Restoration of Neuronal Insulin Signaling vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092505
  94. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092756
  95. The emerging roles of protein homeostasis‐governing pathways in Alzheimer's disease vol.17, pp.5, 2015, https://doi.org/10.1111/acel.12801
  96. Peculiarities of Emotional Behavior of Aged Rats in Preclinical Parkinson’s Disease Model vol.54, pp.6, 2018, https://doi.org/10.1134/s00220930180600133
  97. All About the Core: A Therapeutic Strategy to Prevent Protein Accumulation with Proteasome Core Particle Stimulators vol.1, pp.2, 2015, https://doi.org/10.1021/acsptsci.8b00042
  98. TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14 vol.9, pp.1, 2015, https://doi.org/10.1038/s41467-018-03499-z
  99. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-03509-0
  100. Metabolomics profiling reveals differential adaptation of major energy metabolism pathways associated with autophagy upon oxygen and glucose reduction vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-19421-y
  101. White paper by the Society for CSF Analysis and Clinical Neurochemistry: Overcoming barriers in biomarker development and clinical translation vol.10, pp.1, 2015, https://doi.org/10.1186/s13195-018-0359-x
  102. Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-018-35811-8
  103. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs vol.19, pp.1, 2019, https://doi.org/10.2174/1871529x18666180522073855
  104. VPS35-Based Approach: A Potential Innovative Treatment in Parkinson's Disease vol.10, pp.None, 2019, https://doi.org/10.3389/fneur.2019.01272
  105. Amylotrophic Lateral Sclerosis-Like Motor Impairment in Prion Diseases vol.10, pp.1, 2015, https://doi.org/10.4236/nm.2019.101002
  106. Too sweet: Problems of protein glycation in the eye vol.178, pp.None, 2015, https://doi.org/10.1016/j.exer.2018.08.017
  107. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010040
  108. The Role of Deubiquitinases in Oncovirus and Host Interactions vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/2128410
  109. Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4741252
  110. Influence of Normal Aging on Brain Autophagy: A Complex Scenario vol.11, pp.None, 2015, https://doi.org/10.3389/fnagi.2019.00049
  111. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2015, https://doi.org/10.1080/13543776.2019.1556258
  112. Live-cell super-resolution microscopy reveals a primary role for diffusion in polyglutamine-driven aggresome assembly vol.294, pp.1, 2015, https://doi.org/10.1074/jbc.ra118.003500
  113. Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity vol.62, pp.1, 2015, https://doi.org/10.1021/acs.jmedchem.8b01025
  114. Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code vol.7, pp.None, 2019, https://doi.org/10.3389/fchem.2019.00931
  115. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake vol.13, pp.None, 2015, https://doi.org/10.3389/fncel.2019.00035
  116. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death vol.13, pp.None, 2015, https://doi.org/10.3389/fnins.2019.00796
  117. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement vol.56, pp.2, 2015, https://doi.org/10.1007/s12035-018-1157-y
  118. Monitoring α‐synuclein multimerization in vivo vol.33, pp.2, 2015, https://doi.org/10.1096/fj.201800148rrr
  119. Ubiquitin binds the amyloid β peptide and interferes with its clearance pathways vol.10, pp.9, 2015, https://doi.org/10.1039/c8sc03394c
  120. The role of raptor in the mechanical load‐induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy vol.33, pp.3, 2015, https://doi.org/10.1096/fj.201801653rr
  121. Suppression of the Ubiquitin Pathway by Small Molecule Binding to Ubiquitin Enhances Doxorubicin Sensitivity of the Cancer Cells vol.24, pp.6, 2015, https://doi.org/10.3390/molecules24061073
  122. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models vol.68, pp.2, 2015, https://doi.org/10.3233/jad-181021
  123. Parkinson’s Disease and Aging vol.9, pp.2, 2015, https://doi.org/10.1134/s2079057019020085
  124. Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity vol.20, pp.9, 2015, https://doi.org/10.3390/ijms20092197
  125. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10 vol.20, pp.9, 2015, https://doi.org/10.3390/ijms20092250
  126. The role of ubiquitin-specific peptidases in cancer progression vol.26, pp.None, 2015, https://doi.org/10.1186/s12929-019-0522-0
  127. The regulatory role of cystatin C in autophagy and neurodegeneration vol.23, pp.4, 2019, https://doi.org/10.18699/vj19.507
  128. LRSAM1 E3 ubiquitin ligase: molecular neurobiological perspectives linked with brain diseases vol.76, pp.11, 2015, https://doi.org/10.1007/s00018-019-03055-y
  129. An Infection Hypothesis of Parkinson’s Disease vol.49, pp.5, 2015, https://doi.org/10.1007/s11055-019-00769-1
  130. FipoQ/FBXO33, a Cullin‐1‐based ubiquitin ligase complex component modulates ubiquitination and solubility of polyglutamine disease protein vol.149, pp.6, 2015, https://doi.org/10.1111/jnc.14669
  131. In Silico Insights into HIV-1 Vpu-Tetherin Interactions and Its Mutational Counterparts vol.7, pp.6, 2019, https://doi.org/10.3390/medsci7060074
  132. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases vol.76, pp.13, 2015, https://doi.org/10.1007/s00018-019-03082-9
  133. Mn-Induced Neurocytes Injury and Autophagy Dysfunction in Alpha-Synuclein Wild-Type and Knock-Out Mice: Highlighting the Role of Alpha-Synuclein vol.36, pp.1, 2019, https://doi.org/10.1007/s12640-019-00016-y
  134. Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond vol.20, pp.14, 2019, https://doi.org/10.3390/ijms20143379
  135. A Comparative Analysis of the Treatment of Decision-Making by or for Patients with Neurodegenerative Diseases in Four Legal Jurisdictions vol.70, pp.1, 2015, https://doi.org/10.3233/jad-190259
  136. Cell death and mitochondrial dysfunction induced by the dietary non-proteinogenic amino acid l-azetidine-2-carboxylic acid (Aze) vol.51, pp.8, 2015, https://doi.org/10.1007/s00726-019-02763-w
  137. Dosage compensation plans: protein aggregation provides additional insurance against aneuploidy vol.33, pp.15, 2015, https://doi.org/10.1101/gad.329383.119
  138. Biocompatible Inhibitor Based on Chitosan and Amphiphilic Peptide against Mutant Huntingtin Toxicity vol.20, pp.16, 2015, https://doi.org/10.1002/cbic.201900242
  139. Neuroprotective Effects of Ginseng Phytochemicals: Recent Perspectives vol.24, pp.16, 2015, https://doi.org/10.3390/molecules24162939
  140. The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia vol.11, pp.506, 2015, https://doi.org/10.1126/scitranslmed.aav4881
  141. Spontaneous Isomerization of Long-Lived Proteins Provides a Molecular Mechanism for the Lysosomal Failure Observed in Alzheimer’s Disease vol.5, pp.8, 2019, https://doi.org/10.1021/acscentsci.9b00369
  142. Upregulation of Proteolytic Pathways and Altered Protein Biosynthesis Underlie Retinal Pathology in a Mouse Model of Alzheimer’s Disease vol.56, pp.9, 2015, https://doi.org/10.1007/s12035-019-1479-4
  143. Balanced actions of protein synthesis and degradation in memory formation vol.26, pp.9, 2015, https://doi.org/10.1101/lm.048785.118
  144. A Near‐Infrared‐Controllable Artificial Metalloprotease Used for Degrading Amyloid‐β Monomers and Aggregates vol.25, pp.51, 2015, https://doi.org/10.1002/chem.201902828
  145. Big data of clinical manifestations combined with neuroelectrophysiologic features in the early diagnosis of motor neuron disease vol.10, pp.10, 2019, https://doi.org/10.1007/s12652-018-1080-0
  146. β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation vol.130, pp.None, 2015, https://doi.org/10.1016/j.nbd.2019.104497
  147. Natural Products as Modulators of the Proteostasis Machinery: Implications in Neurodegenerative Diseases vol.20, pp.19, 2015, https://doi.org/10.3390/ijms20194666
  148. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases vol.20, pp.20, 2019, https://doi.org/10.3390/ijms20204976
  149. Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway vol.15, pp.10, 2015, https://doi.org/10.1080/15548627.2019.1596476
  150. AKT PHOSPHORYLATION OF MITOCHONDRIAL LonP1 PROTEASE ENABLES OXIDATIVE METABOLISM AND ADVANCED TUMOR TRAITS vol.38, pp.43, 2015, https://doi.org/10.1038/s41388-019-0939-7
  151. Cross talk between 26S proteasome and mitochondria in human mesenchymal stem cells’ ability to survive under hypoxia stress vol.69, pp.6, 2015, https://doi.org/10.1007/s12576-019-00720-6
  152. Autophagy in Xenopus laevis rod photoreceptors is independently regulated by phototransduction and misfolded RHOP23H vol.15, pp.11, 2015, https://doi.org/10.1080/15548627.2019.1596487
  153. Inducing α-synuclein compaction: a new strategy for inhibiting α-synuclein aggregation? vol.14, pp.11, 2015, https://doi.org/10.4103/1673-5374.259608
  154. Initiation and Transmission of α-Synuclein Pathology in Parkinson’s Disease vol.44, pp.12, 2019, https://doi.org/10.1007/s11064-019-02896-0
  155. Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau vol.10, pp.1, 2015, https://doi.org/10.1038/s41467-019-12070-3
  156. Possible neuromodulating role of different grape (Vitis vinifera L.) derived polyphenols against Alzheimer’s dementia: treatment and mechanisms vol.43, pp.1, 2015, https://doi.org/10.1186/s42269-019-0149-z
  157. Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V vol.32, pp.10, 2019, https://doi.org/10.1093/protein/gzaa008
  158. Age-related differences in sleep disturbances in rat models of preclinical Parkinson’s disease vol.120, pp.9, 2015, https://doi.org/10.17116/jnevro202012009226
  159. Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases vol.15, pp.4, 2015, https://doi.org/10.4103/1673-5374.266911
  160. An appropriate level of autophagy reduces emulsified isoflurane-induced apoptosis in fetal neural stem cells vol.15, pp.12, 2015, https://doi.org/10.4103/1673-5374.285004
  161. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases vol.20, pp.None, 2015, https://doi.org/10.2174/1568026620666200618114924
  162. Chloroquine, the Coronavirus Crisis, and Neurodegeneration: A Perspective vol.11, pp.None, 2015, https://doi.org/10.3389/fneur.2020.596528
  163. Neuronal–Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer’s Disease: Gene Ontology and Lithium Pathways vol.14, pp.None, 2020, https://doi.org/10.3389/fnins.2020.579984
  164. Protein Aggregation and Dysfunction of Autophagy-Lysosomal Pathway: A Vicious Cycle in Lysosomal Storage Diseases vol.13, pp.None, 2015, https://doi.org/10.3389/fnmol.2020.00037
  165. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside vol.7, pp.None, 2015, https://doi.org/10.3389/fcvm.2020.585309
  166. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases vol.12, pp.None, 2020, https://doi.org/10.3389/fnagi.2020.00191
  167. Manganese Exposure Aggravates β-Amyloid Pathology by Microglial Activation vol.12, pp.None, 2015, https://doi.org/10.3389/fnagi.2020.556008
  168. The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein vol.94, pp.4, 2015, https://doi.org/10.1128/jvi.01564-19
  169. Recent advances in carbon dots for bioimaging applications vol.5, pp.2, 2015, https://doi.org/10.1039/c9nh00476a
  170. Histone Deacetylase 6 and the Disease Mechanisms of α-Synucleinopathies vol.12, pp.None, 2015, https://doi.org/10.3389/fnsyn.2020.586453
  171. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms vol.10, pp.4, 2015, https://doi.org/10.3390/biom10040629
  172. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies vol.21, pp.8, 2020, https://doi.org/10.3390/ijms21083028
  173. Lactulose and Melibiose Inhibit α-Synuclein Aggregation and Up-Regulate Autophagy to Reduce Neuronal Vulnerability vol.9, pp.5, 2015, https://doi.org/10.3390/cells9051230
  174. Cell-Clearing Systems Bridging Repeat Expansion Proteotoxicity and Neuromuscular Junction Alterations in ALS and SBMA vol.21, pp.11, 2015, https://doi.org/10.3390/ijms21114021
  175. Neuroprotective Effect of Brazilin on Amyloid β (25–35)-Induced Pathology in a Human Neuroblastoma Model vol.5, pp.23, 2015, https://doi.org/10.1021/acsomega.0c00396
  176. Pharmacokinetics, Pharmacodynamics, and Safety of a Single Escalating Dose and Repeated Doses of Rasagiline Transdermal Patch in Healthy Chinese Subjects vol.9, pp.5, 2015, https://doi.org/10.1002/cpdd.761
  177. Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α‐synuclein on simulation techniques and forc vol.96, pp.1, 2015, https://doi.org/10.1111/cbdd.13662
  178. U-133, a Chaperone Inducer, Eliminates Sleep Disturbances in a Model of the Preclinical Stage of Parkinson’s Disease in Aged Rats vol.10, pp.3, 2020, https://doi.org/10.1134/s2079057020030133
  179. Site-specific ubiquitination of pathogenic huntingtin attenuates its deleterious effects vol.117, pp.31, 2015, https://doi.org/10.1073/pnas.2007667117
  180. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins vol.10, pp.9, 2020, https://doi.org/10.3390/biom10091305
  181. mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092486
  182. Ameliorative Properties of Boronic Compounds in In Vitro and In Vivo Models of Alzheimer’s Disease vol.21, pp.18, 2015, https://doi.org/10.3390/ijms21186664
  183. GTP‐binding inhibitors increase LRRK2‐linked ubiquitination and Lewy body‐like inclusions vol.235, pp.10, 2020, https://doi.org/10.1002/jcp.29632
  184. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies vol.11, pp.19, 2015, https://doi.org/10.1021/acschemneuro.0c00381
  185. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin vol.10, pp.11, 2015, https://doi.org/10.3390/biom10111581
  186. Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in the Dystrophin Protein vol.22, pp.None, 2020, https://doi.org/10.1016/j.omtn.2020.08.019
  187. Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3 vol.10, pp.None, 2015, https://doi.org/10.1038/s41598-020-66292-3
  188. Molecular evolutionary and structural analysis of human UCHL1 gene demonstrates the relevant role of intragenic epistasis in Parkinson’s disease and other neurological disorders vol.20, pp.1, 2015, https://doi.org/10.1186/s12862-020-01684-7
  189. Nucleo–cytoplasmic transport defects and protein aggregates in neurodegeneration vol.9, pp.1, 2020, https://doi.org/10.1186/s40035-020-00205-2
  190. HDAC6 ZnF UBP as the Modifier of Tau Structure and Function vol.59, pp.48, 2020, https://doi.org/10.1021/acs.biochem.0c00585
  191. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective vol.11, pp.24, 2015, https://doi.org/10.1021/acschemneuro.0c00696
  192. Promising drug targets and associated therapeutic interventions in Parkinson’s disease vol.16, pp.9, 2021, https://doi.org/10.4103/1673-5374.306066
  193. Free ubiquitin: a novel therapeutic target for neurodegenerative diseases vol.16, pp.9, 2015, https://doi.org/10.4103/1673-5374.306075
  194. Therapeutic potential of trehalose in neurodegenerative diseases: the knowns and unknowns vol.16, pp.10, 2021, https://doi.org/10.4103/1673-5374.308085
  195. Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/8377362
  196. Decoding Conformational Imprint of Convoluted Molecular Interactions Between Prenylflavonoids and Aggregated Amyloid-Beta42 Peptide Causing Alzheimer’s Disease vol.9, pp.None, 2015, https://doi.org/10.3389/fchem.2021.753146
  197. The Heart of the Alzheimer's: A Mindful View of Heart Disease vol.11, pp.None, 2015, https://doi.org/10.3389/fphys.2020.625974
  198. Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity vol.13, pp.None, 2015, https://doi.org/10.3389/fnagi.2021.635760
  199. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases vol.12, pp.None, 2015, https://doi.org/10.3389/fphar.2021.669638
  200. SC75741, A Novel c-Abl Inhibitor, Promotes the Clearance of TDP25 Aggregates via ATG5-Dependent Autophagy Pathway vol.12, pp.None, 2015, https://doi.org/10.3389/fphar.2021.741219
  201. Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1 vol.595, pp.4, 2015, https://doi.org/10.1002/1873-3468.14030
  202. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone‐mediated autophagy in cerebellar neurons vol.47, pp.2, 2015, https://doi.org/10.1111/nan.12649
  203. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer vol.10, pp.2, 2015, https://doi.org/10.3390/cells10020335
  204. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041796
  205. Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22042046
  206. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities vol.28, pp.2, 2015, https://doi.org/10.1038/s41418-020-00706-7
  207. Co-Transmission of Alpha-Synuclein and TPPP/p25 Inhibits Their Proteolytic Degradation in Human Cell Models vol.8, pp.None, 2015, https://doi.org/10.3389/fmolb.2021.666026
  208. Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases vol.26, pp.3, 2015, https://doi.org/10.3390/molecules26030728
  209. Cardiac electrical remodeling and neurodegenerative diseases association vol.267, pp.None, 2015, https://doi.org/10.1016/j.lfs.2020.118976
  210. Single Molecule Characterization of Amyloid Oligomers vol.26, pp.4, 2015, https://doi.org/10.3390/molecules26040948
  211. Resveratrol Reduces COMPOPATHY in Mice Through Activation of Autophagy vol.5, pp.3, 2015, https://doi.org/10.1002/jbm4.10456
  212. Stress-induced NEDDylation promotes cytosolic protein aggregation through HDAC6 in a p62-dependent manner vol.24, pp.3, 2015, https://doi.org/10.1016/j.isci.2021.102146
  213. Up-regulated spinal microRNAs induce aggregation of superoxide dismutase 1 protein in canine degenerative myelopathy vol.135, pp.None, 2015, https://doi.org/10.1016/j.rvsc.2020.11.018
  214. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases vol.22, pp.6, 2015, https://doi.org/10.3390/ijms22063064
  215. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis vol.22, pp.3, 2015, https://doi.org/10.15252/embr.202051063
  216. Thioredoxin-80 protects against amyloid-beta pathology through autophagic-lysosomal pathway regulation vol.26, pp.4, 2015, https://doi.org/10.1038/s41380-019-0521-2
  217. Immunoproteasome Activity and Content Determine Hematopoietic Cell Sensitivity to ONX-0914 and to the Infection of Cells with Lentiviruses vol.10, pp.5, 2021, https://doi.org/10.3390/cells10051185
  218. Telomerase in Brain: The New Kid on the Block and Its Role in Neurodegenerative Diseases vol.9, pp.5, 2015, https://doi.org/10.3390/biomedicines9050490
  219. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration vol.11, pp.5, 2015, https://doi.org/10.3390/life11050432
  220. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy vol.67, pp.None, 2015, https://doi.org/10.1016/j.arr.2021.101271
  221. Are Lysosomes Potential Therapeutic Targets for Parkinson’s Disease? vol.20, pp.None, 2015, https://doi.org/10.2174/1871527320666210809123630
  222. Genome wide study of tardive dyskinesia in schizophrenia vol.11, pp.1, 2021, https://doi.org/10.1038/s41398-021-01471-y
  223. SCF‐Slimb is critical for Glycogen synthase kinase‐3β‐mediated suppression of TAF15‐induced neurotoxicity in Drosophila vol.157, pp.6, 2015, https://doi.org/10.1111/jnc.15182
  224. Physical Exercise-Induced Myokines in Neurodegenerative Diseases vol.22, pp.11, 2015, https://doi.org/10.3390/ijms22115795
  225. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases vol.69, pp.22, 2015, https://doi.org/10.1021/acs.jafc.1c00923
  226. Age-Related Characteristics of Sleep Impairments in a Model of the Preclinical Stage of Parkinson’s Disease in Rats vol.51, pp.6, 2021, https://doi.org/10.1007/s11055-021-01124-z
  227. Lycorine, a natural alkaloid, promotes the degradation of alpha-synuclein via PKA-mediated UPS activation in transgenic Parkinson's disease models vol.87, pp.None, 2015, https://doi.org/10.1016/j.phymed.2021.153578
  228. Aggregated Tau-PHF6 (VQIVYK) Potentiates NLRP3 Inflammasome Expression and Autophagy in Human Microglial Cells vol.10, pp.7, 2015, https://doi.org/10.3390/cells10071652
  229. Expression and Role of Ubiquitin-Specific Peptidases in Osteoblasts vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147746
  230. Autophagic Pathways to Clear the Tau Aggregates in Alzheimer’s Disease vol.41, pp.6, 2015, https://doi.org/10.1007/s10571-020-00897-0
  231. Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases vol.69, pp.None, 2015, https://doi.org/10.1016/j.arr.2021.101367
  232. Alternative systems for misfolded protein clearance: life beyond the proteasome vol.288, pp.15, 2015, https://doi.org/10.1111/febs.15617
  233. Linking Oxidative Stress and Proteinopathy in Alzheimer’s Disease vol.10, pp.8, 2015, https://doi.org/10.3390/antiox10081231
  234. The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin vol.26, pp.16, 2015, https://doi.org/10.3390/molecules26164954
  235. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy vol.41, pp.5, 2021, https://doi.org/10.1002/med.21719
  236. Lipidomic and Proteomic Alterations Induced by Even and Odd Medium-Chain Fatty Acids on Fibroblasts of Long-Chain Fatty Acid Oxidation Disorders vol.22, pp.19, 2021, https://doi.org/10.3390/ijms221910556
  237. Autophagy Induction and Accumulation of Phosphorylated Tau in the Hippocampus and Prefrontal Cortex of Adult C57BL/6 Mice Subjected to Adolescent Fluoxetine Treatment vol.83, pp.4, 2015, https://doi.org/10.3233/jad-210475
  238. Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging vol.28, pp.11, 2015, https://doi.org/10.1016/j.stem.2021.07.009
  239. Proteolysis of Amyloid β by Lysosomal Enzymes as a Function of Fibril Morphology vol.6, pp.47, 2015, https://doi.org/10.1021/acsomega.1c03915
  240. Regulating endoplasmic reticulum localization of a fluorescent NBD adamantane conjugate by Cucurbit [7]uril vol.3, pp.None, 2015, https://doi.org/10.1016/j.chphi.2021.100051
  241. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration vol.82, pp.None, 2015, https://doi.org/10.1016/j.mam.2021.101025
  242. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease vol.12, pp.None, 2015, https://doi.org/10.1016/j.mbplus.2021.100089
  243. UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy vol.12, pp.1, 2015, https://doi.org/10.1038/s41467-021-22252-7
  244. PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-87382-w
  245. Age-dependent shift in the de novo proteome accompanies pathogenesis in an Alzheimer’s disease mouse model vol.4, pp.1, 2015, https://doi.org/10.1038/s42003-021-02324-6
  246. Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes vol.4, pp.1, 2021, https://doi.org/10.1038/s42003-021-02603-2
  247. Proteostasis deregulation as a driver of C9ORF72 pathogenesis vol.159, pp.6, 2021, https://doi.org/10.1111/jnc.15529
  248. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review vol.21, pp.1, 2015, https://doi.org/10.1186/s12935-021-02160-y
  249. Cellular and pathological heterogeneity of primary tauopathies vol.16, pp.1, 2015, https://doi.org/10.1186/s13024-021-00476-x
  250. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer’s amyloidosis vol.13, pp.1, 2015, https://doi.org/10.1186/s13195-021-00769-9
  251. Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability vol.143, pp.47, 2021, https://doi.org/10.1021/jacs.1c09589
  252. Regulation of neuronal autophagy and the implications in neurodegenerative diseases vol.162, pp.None, 2015, https://doi.org/10.1016/j.nbd.2021.105582