DOI QR코드

DOI QR Code

A new Hybrid Algorithm for Simultaneous Size and Semi-rigid Connection Type Optimization of Steel Frames

  • Hadidi, Ali (Department of Civil Engineering, University of Tabriz) ;
  • Rafiee, Amin (Department of Civil Engineering, University of Tabriz)
  • Received : 2013.09.16
  • Accepted : 2014.09.23
  • Published : 2015.03.31

Abstract

A hybrid algorithm based on Harmony Search (HS) and Big Bang-Big Crunch (BB-BC) optimization methods is proposed for optimal design of semi-rigid steel frames. The algorithm selects suitable sections for beams and columns and assigns suitable semi-rigid connection types for beam-to-column connections, such that the total member plus connection cost of the frame, is minimized. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the design procedure. The nonlinear moment-rotation behavior of connections and $P-{\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark steel frames are designed and the results are compared with those of standard BB-BC and of other studies. The comparisons demonstrate that proposed algorithm performs better than standard BB-BC and HS methods in all examples and that the total cost of a frame can be reduced through suitable selection of its beam-to-column connection types.

Keywords

References

  1. Abdalla, K. M. and Chen, W. F. (1995). "Expanded database of semi-rigid steel connections." Computers & Structures, 56(4), pp. 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. Afshar, M. H. and Motaei, I. (2011). "Constrained big bangbig crunch algorithm for optimal solution of large scale reservoir operation problem." International Journal of Optimization in Civil Engineering, 1(2), pp. 357-375.
  3. AISC-ASD (1989). Manual of steel construction-Allowable Stress Design. American Institute of Steel Construction, Chicago.
  4. AISC-LRFD (2001). Manual of steel construction-Load and Resistance Factor Design. American Institute of Steel Construction, Chicago.
  5. Alsalloum, Y. A. and Almusallam, T. H. (1995). "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames." Journal of Constructional Steel Research, 35(2), pp. 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
  6. Bayo, E., Cabrero, J. M., and Gil, B. (2006). "An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures." Engineering Structures, 28(1), pp. 97-108. https://doi.org/10.1016/j.engstruct.2005.08.001
  7. BS5950 (1990). Structural use of steelworks in buildings. British Standards Institution, London.
  8. Camp, C. V. and Assadollahi, A. (2013). "$CO_2$ and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm." Structural and Multidisciplinary Optimization, 48(2), pp. 411-426. https://doi.org/10.1007/s00158-013-0897-6
  9. Chen, W. F., Goto, Y., and Liew, J. Y. R. (1996). Stability design of semi-rigid frames. John Wiley & Sons Inc, New York, USA.
  10. Cheng, Y. M., Li, L., Lansivaara, T., Chi, S. C., and Sun, Y. J. (2008). "An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis." Engineering Optimization, 40(2), pp. 95-115. https://doi.org/10.1080/03052150701618153
  11. Chiorean, C. G. (2009). "A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks." Engineering Structures, 31(12), pp. 3016-3033. https://doi.org/10.1016/j.engstruct.2009.08.003
  12. Chisala, M. L. (1999). "Modeling M-e Curves for standard beam-to-column connections." Engineering Structures, 21(12), pp. 1066-1075. https://doi.org/10.1016/S0141-0296(98)00033-9
  13. Degertekin, S. O. (2008). "Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods." Structural Engineering and Mechanics, 29(4), pp. 391-410. https://doi.org/10.12989/sem.2008.29.4.391
  14. Degertekin, S. O. and Hayalioglu, M. S. (2010). "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases." Structural and Multidisciplinary Optimization, 42(5), pp. 755-768. https://doi.org/10.1007/s00158-010-0533-7
  15. Erol, O. K. and Eksin, I. (2006). "A new optimization method: big bang-big crunch." Advances in Engineering Software, 37(2), pp. 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
  16. Eurocode 3 (1992). Design of Steel Structures-Part I: General rules and rules for buildings. Committee European de Normalisation (CEN), Brussels.
  17. Faella, C., Piluso, V., and Rizzano, G. (2000). Structural steel semi-rigid connections. CRC Press, Boca Raton.
  18. Frye, M. J. and Morris, G. A. (1975). "Analysis of flexibly connected steel frames." Canadian Journal of Civil Engineering, 2(3), pp. 280-291. https://doi.org/10.1139/l75-026
  19. Geem, Z. W. (2007). "Optimal scheduling of multiple dam system using harmony search algorithm." Lecture Notes in Computer Science, 4507, pp. 316-323. https://doi.org/10.1007/978-3-540-73007-1_39
  20. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). "A new heuristic optimization algorithm: harmony search." Simulation, 76(2), pp. 60-68. https://doi.org/10.1177/003754970107600201
  21. Hadidi, A. and Rafiee, A. (2014). "Harmony search based, improved particle swarm optimizer for minimum cost design of semi-rigid steel frames." Structural Engineering and Mechanics, 50(3), pp. 323-347. https://doi.org/10.12989/sem.2014.50.3.323
  22. Hayalioglu, M. S. and Degertekin, S. O. (2005). "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization." Computers & Structures, 83(21-22), pp. 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  23. Ihaddoudene, A. N. T., Saidani, M., and Chemrouk, M. (2009). "Mechanical model for the analysis of steel frames with semi rigid joints." Journal of Constructional Steel Research, 65(3), pp. 631-640. https://doi.org/10.1016/j.jcsr.2008.08.010
  24. Kameshki, E. S. and Saka, M. P. (2003). "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections." Journal of Constructional Steel Research, 59(1), pp. 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
  25. Kaveh, A. and Moez, H. (2008). "Minimal cycle bases for analysis of frames with semi-rigid joints." Computers & Structures, 86(6), pp. 503-510. https://doi.org/10.1016/j.compstruc.2007.05.024
  26. Kaveh, A. and Talatahari, S. (2009). "Size optimization of space trusses using big bang-big crunch algorithm." Computers & Structures, 87(17-18), pp. 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
  27. Kaveh, A. and Talatahari, S. (2010a). "A discrete big bangbig crunch algorithm for optimal design of skeletal structures." Asian Journal of Civil Engineering, 11(1), pp. 103-122.
  28. Kaveh, A. and Talatahari, S. (2010b). "Optimal design of schwedler and ribbed domes via hybrid big bang-big crunch alghoritm." Journal of Constructional Steel Research, 66(3), pp. 412-419. https://doi.org/10.1016/j.jcsr.2009.10.013
  29. Kim, J. H., Ghaboussi, J., and Elnashai, A. S. (2010). "Mechanical and informational modeling of steel beamto-column connections." Engineering Structures, 32(2), pp. 449-458. https://doi.org/10.1016/j.engstruct.2009.10.007
  30. Kishi, N., Chen, W. F., and Goto, Y. (1997). "Effective length factor of columns in semi-rigid and unbraced frames." Journal of Structural Engineering, ASCE, 123(3), pp. 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
  31. Lee, K. S. and Geem, Z. W. (2005). "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice." Computer Methods in Applied Mechanics and Engineering, 194(36-38), pp. 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  32. Mun, S. and Geem, Z. W. (2009). "Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm." Mechanics of Materials, 41(3), pp. 339-353. https://doi.org/10.1016/j.mechmat.2008.11.008
  33. Nguyen, P. C. and Kim, S. E. (2013). "Nonlinear elastic dynamic analysis of space steel frames with semi-rigid connections." Journal of Constructional Steel Research, 84(5), pp. 72-81. https://doi.org/10.1016/j.jcsr.2013.02.004
  34. Rafiee, A., Talatahari, S., and Hadidi, A. (2013). "Optimum design of steel frames with semi-rigid connections using big bang-big crunch method." Steel and Composite Structures, 14(5), pp. 431-451. https://doi.org/10.12989/scs.2013.14.5.431
  35. Rajeev, S. and Krishnamoorthy, C. S. (1992). "Discrete optimization of structures using genetic algorithms." Journal of Structural Engineering, ASCE, 118(5), pp. 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  36. Saka, M. P. (2009). "Optimum design of steel sway frames to BS5950 using harmony search algorithm." Journal of Constructional Steel Research, 65(1), pp. 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
  37. Saka, M. P. and Erdal, F. (2009). "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC." Structural and Multidisciplinary Optimization, 38(1), pp. 25-41. https://doi.org/10.1007/s00158-008-0263-2
  38. Simoes, L. M. C. (1996). "Optimization of frames with semi-rigid connections." Computers & Structures, 60(4), pp. 531-539. https://doi.org/10.1016/0045-7949(95)00427-0
  39. Tang, H., Zhou, J., Xue, S., and Xie, L. (2010). "Big bangbig crunch optimization for parameter estimation in structural systems." Mechanical Systems and Signal Processing, 24(8), pp. 2888-2897. https://doi.org/10.1016/j.ymssp.2010.03.012
  40. Valipour, H. R. and Bradford, M. A. (2013). "Nonlinear PA analysis of steel frames with semi-rigid connections." Steel and Composite Structures, 14(1), pp. 1-20. https://doi.org/10.12989/scs.2013.14.1.001
  41. Wu, Z., Zhang, S., and Jiang, S. F. (2012). "Simulation of tensile bolts in finite element modeling of semi-rigid beam-to-column connections." International Journal of Steel Structures, 12(3), pp. 339-350. https://doi.org/10.1007/s13296-012-3004-8
  42. Xu, L. and Grierson, D. E. (1993). "Computer automated design of semi-rigid steel frameworks." Journal of Structural Engineering, ASCE, 119(6), pp. 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)

Cited by

  1. An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions vol.55, pp.5, 2015, https://doi.org/10.12989/sem.2015.55.5.979
  2. Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations vol.11, pp.4, 2015, https://doi.org/10.12989/eas.2016.11.4.701
  3. On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2015, https://doi.org/10.12989/sem.2016.60.5.761
  4. Contribution of Clearance Holes to Semi-rigid Effects of Bolted Joints vol.262, pp.None, 2015, https://doi.org/10.1088/1757-899x/262/1/012073
  5. An analytical method to estimate the total installed cost of structural steel building frames during early design vol.15, pp.None, 2015, https://doi.org/10.1016/j.jobe.2017.10.010
  6. A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2015, https://doi.org/10.12989/sem.2018.66.2.173
  7. Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2015, https://doi.org/10.12989/sem.2019.70.2.221
  8. Minimum cost strengthening of existing masonry arch railway bridges vol.75, pp.2, 2015, https://doi.org/10.12989/sem.2020.75.2.271