DOI QR코드

DOI QR Code

Electrochemical noise investigation of Aloe plant extract as green inhibitor on the corrosion of stainless steel in 1 M H2SO4

  • Mehdipour, M. (Department of Mining and Metallurgical Engineering, Amirkabir University of Technology) ;
  • Ramezanzadeh, B. (Department of Surface Coatings and Corrosion, Institute for Color Science and Technology) ;
  • Arman, S.Y. (Department of Mining and Metallurgical Engineering, Amirkabir University of Technology)
  • Received : 2013.11.16
  • Accepted : 2014.02.22
  • Published : 2015.01.25

Abstract

The inhibition action of Aloe Vera leaf extract as environmentally friendly inhibitor for the corrosion protection of stainless steel in $1M\;H_2SO_4$ solution was studied by electrochemical techniques as well as scanning electron microscope. The results of linear polarization and electrochemical impedance spectroscopy proved the effectiveness of Aloe Vera extract as concentration increased. Corrosion inhibition of Aloe extract was also studied by electrochemical noise (EN). Employing EN, different aspects like transient analysis, noise resistant and characteristic charge were characterized. Moreover, a literature review of Aloe Vera characterization using high-performance liquid chromatography and GC-MS was carried out.

Keywords

References

  1. B.I. Obot, N.O. Obi-Egbedi, Corros. Sci. 53 (2011) 263-275. https://doi.org/10.1016/j.corsci.2010.09.020
  2. D. Ozkir, K. Kayakirilmaz, E. Bayol, A.A. Gurten, F. Kandemirl, Corros. Sci. 56 (2012) 143-152. https://doi.org/10.1016/j.corsci.2011.11.010
  3. L. Wang, J.-X. Pu, H.-C. Luo, Corros. Sci. 48 (2003) 677-683.
  4. M. Abdallah, Corros. Sci. 45 (2003) 2705-2716 (Eaenergy). https://doi.org/10.1016/S0010-938X(03)00107-0
  5. H.B. Rudresh, S.M. Mayanna, Mater. Corros. 31 (1980) 286-290. https://doi.org/10.1002/maco.19800310406
  6. E.E. Foad El-Sherbini, S.M. Abdel Wahaab, M. Deyab, Mater. Chem. Phys. 89 (2005) 183-191. https://doi.org/10.1016/j.matchemphys.2003.09.055
  7. R.D. Armstrong, L. Peggs, Corros. Sci. 36 (1994) 749-757. https://doi.org/10.1016/0010-938X(94)90167-8
  8. M.R. Arshadi, M., Lashgari, Gh.A. Parsafar, Mater. Chem. Phys. 86 (2004) 311-314. https://doi.org/10.1016/j.matchemphys.2004.03.028
  9. Emilio L. Bettini (Ed.), Prog Corros Res, Nova Science Publishers Inc., 2007, p. 160.
  10. F. Bentiss, M. Lagrenee, M. Trainsel, J.C. Hornez, Corros. Sci. 41 (1999) 789-803. https://doi.org/10.1016/S0010-938X(98)00153-X
  11. V.S. Sastri, Green Corrosion Inhibitors: Theory and Practice, John Wiley & Sons, Inc., 2011.
  12. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, A. Cherqaoui, D. Takky, Appl. Surf. Sci. 252 (2006) 8178-8184. https://doi.org/10.1016/j.apsusc.2005.10.060
  13. I.B. Obot, N.O. Obi-Egbedi, Corros. Sci. 52 (2010) 657-660. https://doi.org/10.1016/j.corsci.2009.10.017
  14. S.A. Abd El-Maksoud, Int. J. Electrochem. Sci. 3 (2008) 528-555.
  15. C.M. Goulart, A. Esteves-Souza, C.A. Martinez-Huitle, C.J. Ferreira Rodrigues, M.A. Medeiros Maciel, A. Echevarria, Corros. Sci. 67 (2013) 281-291. https://doi.org/10.1016/j.corsci.2012.10.029
  16. P.A. Schweitzer, Corrosion Engineering Handbook: Corrosion of Linings and Coatings Cathodic and Inhibitor Protection and Corrosion Monitoring, 2nd edn., CRC press, 2007.
  17. S. Safak, B. Duran, A. Yurt, G. Turkoglu, Corros. Sci. 54 (2012) 251-259. https://doi.org/10.1016/j.corsci.2011.09.026
  18. P.B. Raja, M.G. Sethuramam, Mater. Lett. 62 (2008) 113-116. https://doi.org/10.1016/j.matlet.2007.04.079
  19. P.B. Raja, M.G. Sethuramam, Mater. Corros. 60 (2009) 22-28. https://doi.org/10.1002/maco.200805027
  20. E. Stupnisek-Lisac, S. Podbrscek, T. Soric, J. Appl. Electrochem. 24 (1994) 779-784. https://doi.org/10.1007/BF00578094
  21. O.K. Abiola, J.O.E. Otaigbe, O.J. Kio, Corros. Sci. 51 (2009) 1879-1881. https://doi.org/10.1016/j.corsci.2009.04.016
  22. O.K. Abiola, N.C. Oforka, Scientia Africana 2 (2003) 82-90.
  23. A.Y. El-Etre, M. Abdallah, Z.E. El-Tantawy, Corros. Sci. 47 (2005) 385-395. https://doi.org/10.1016/j.corsci.2004.06.006
  24. L. Valek, S. Martinez, Mater. Lett. 61 (2007) 148-151. https://doi.org/10.1016/j.matlet.2006.04.024
  25. H. Kuzuya, I. Tamai, H. Beppu, K. Shimpo, T. Chihara, J. Chromatogr. B Biomed. Sci. Appl. 752 (1) (2001) 91-97. https://doi.org/10.1016/S0378-4347(00)00524-7
  26. N.O. Eddy, S.A. Odoemelam, Pigm. Resin Technol. 38 (2009) 111-115. https://doi.org/10.1108/03699420910940617
  27. O.A. James, A.O. Atela, Pure Appl. Chem. 3 (2008) 159-163.
  28. O.K. Abiola, A.O. James, Corros. Sci. 52 (2010) 661-664. https://doi.org/10.1016/j.corsci.2009.10.026
  29. A.M. Al-Turkustani, S.T. Arab, R.H. Al-Dahiri, Mod. Appl. Sci. 4 (5) (2010) 105-124.
  30. G.O. Avwiri, E. Osarolube, Scientia Africana 9 (2) (2010) 51-58.
  31. S. Garcia, T. Muster, O. Ozkanat, N. Sherman, A. Hughes, H. Terryn, Electrochim. Acta 55 (2010) 2457-2465. https://doi.org/10.1016/j.electacta.2009.12.013
  32. Y. Yan, W. Li, L. Cai, B. Hou, Electrochim. Acta 53 (2008) 5953-5960. https://doi.org/10.1016/j.electacta.2008.03.065
  33. K. Khaled, Electrochim. Acta 48 (2003) 2493-2503. https://doi.org/10.1016/S0013-4686(03)00291-3
  34. W. Li, Q. He, C. Pei, B. Hou, Electrochim. Acta 52 (2007) 6386-6394. https://doi.org/10.1016/j.electacta.2007.04.077
  35. H. Guadalupe, E. Garcia-Ochoa, P.J. Maldonado-Rivas, J. Cruz, T. Pandiyan, J. Electroanal. Chem. 655 (2011) 164-172. https://doi.org/10.1016/j.jelechem.2011.01.039
  36. X. Li, S. Deng, H. Fum, Corros. Sci. 53 (2011) 664-670. https://doi.org/10.1016/j.corsci.2010.10.013
  37. B.P. Markhal, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Corros. Sci. 75 (2013) 269-279. https://doi.org/10.1016/j.corsci.2013.06.010
  38. N. Muthukumar, A. Ilangovan, S. Maruthamuthu, N. Palaniswamy, Electrochim. Acta 52 (2007) 7183-7192. https://doi.org/10.1016/j.electacta.2007.05.036
  39. M. Outirite, M. Lagrenee, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, F. Bentiss, Electrochim. Acta 55 (2010) 1670-1681. https://doi.org/10.1016/j.electacta.2009.10.048
  40. D. Seifzadeh, H. Basharnavaz, A. Bezaatpour, Mater. Chem. Phys. 138 (2013) 794-802. https://doi.org/10.1016/j.matchemphys.2012.12.063
  41. Y. Chen and M. Gopal, Electrochemical methods for monitoring performance of corrosion inhibitor under multiphase flow, NACE International (1999), Paper No.509.
  42. R. Moshrefi, M. Ghassem Mahjani, A. Ehsani, M. Jafarian, Anti-Corros. Method Mater. 58 (2011) 250-257. https://doi.org/10.1108/00035591111167721
  43. H. Ashassi-Sorkhabi, D. Seifzadeh, J Appl. Electrochem. 38 (2008) 1545-1552. https://doi.org/10.1007/s10800-008-9602-7
  44. Y. Tan, S. Bailey, B.Kinselia, Corros. Sci. 38 (1996) 1681-1695. https://doi.org/10.1016/S0010-938X(96)00061-3
  45. R. Naderi, M.M. Attar, Corros. Sci. 51 (2009) 1671-1674. https://doi.org/10.1016/j.corsci.2009.04.015
  46. X. Liu, T. Zhang, Y. Shao, G. Meng, F. Wang, Corros. Sci. 52 (2010) 892-900. https://doi.org/10.1016/j.corsci.2009.11.009
  47. T. Anita, M.G. Pujar, H. Shaikh, R.K. Dayal, H.S. Khatak, Corros. Sci. 48 (2006) 2689-2710. https://doi.org/10.1016/j.corsci.2005.09.007
  48. F. Nejatzadeh-Barandozi, Org. Med. Chem. Lett. (2013) 3-5.
  49. J.H. Hamman, Composition, Molecules 13 (2008) 1599-1616. https://doi.org/10.3390/molecules13081599
  50. X. Wu, W. Ding, J. Zhong, J. Wan, Z. Xie, J. Pharm. Biomed. Anal. 80 (2013) 94-106. https://doi.org/10.1016/j.jpba.2013.02.034
  51. F. Zonta, P. Bogoni, P. Masotti, G. Micali, J. Chromatogr. A 718 (1995) 99-106. https://doi.org/10.1016/0021-9673(95)00637-0
  52. M.K. Park, J.H. Park, N.Y. Kim, Y.G. Shin, Y.S. Choi, J.G. Lee, K.H. Kim, S.K. Lee, Phytochem. Anal. 9 (1998) 186-191. https://doi.org/10.1002/(SICI)1099-1565(199807/08)9:4<186::AID-PCA406>3.0.CO;2-#
  53. G. Karagianis, A. Viljoen, P.G. Waterman, Phytochem. Anal. 14 (2003) 275-280. https://doi.org/10.1002/pca.714
  54. W. Rebecca, O. Kayser, H. Hagels, K.H. Zessin, M. Madundo, N. Gamba, Phytochem. Anal. 14 (2003) 83-86. https://doi.org/10.1002/pca.682
  55. A. Ray, S. Gupta, S. Ghosh, Ind. Crops Prod. 49 (2013) 712-719. https://doi.org/10.1016/j.indcrop.2013.06.008
  56. D. Saccu, P. Bogoni, G. Procida, Aloe Exudate, J. Agric. Food Chem. 49 (2001) 4526-4530. https://doi.org/10.1021/jf010179c
  57. A. Popova, M. Christov, A. Zwetanova, Corros. Sci. 49 (2007) 2131-2143. https://doi.org/10.1016/j.corsci.2006.10.021
  58. S. Deng, X. Li, Corros. Sci. 64 (2012) 253-262. https://doi.org/10.1016/j.corsci.2012.07.017
  59. X. Li, S. Deng, Corros. Sci. 65 (2012) 299-308. https://doi.org/10.1016/j.corsci.2012.08.033
  60. A.K. Satpati, P.V. Ravindran, Mater. Chem. Phys. 109 (2008) 352-359. https://doi.org/10.1016/j.matchemphys.2007.12.002
  61. X. Wang, H. Yang, F. Wang, Corros. Sci. 53 (2011) 113-121. https://doi.org/10.1016/j.corsci.2010.09.029
  62. R. Mandrioli, L. Mercolini, A. Ferranti, S. Fanali, M. Raggi, Food Chem. 126 (2011) 387-393. https://doi.org/10.1016/j.foodchem.2010.10.112
  63. E. Geler, D.S. Azambuja, Corros. Sci. 42 (2000) 631-643. https://doi.org/10.1016/S0010-938X(99)00080-3
  64. S.S. Abd El Rehim, M.A. Amin, S.O. Moussa, A.S. Ellithy, Mater. Chem. Phys. 112 (2008) 898-906. https://doi.org/10.1016/j.matchemphys.2008.06.039
  65. E.A. Noor, Mater. Chem. Phys. 131 (2011) 160-169. https://doi.org/10.1016/j.matchemphys.2011.08.001
  66. S.V. Ramesh, A.V. Adhikari, Mater. Chem. Phys. 115 (2-3) (2009) 618-627. https://doi.org/10.1016/j.matchemphys.2009.01.024

Cited by

  1. Effect of DC trend removal and window functioning methods on correlation between electrochemical noise parameters and EIS data of stainless steel in an inhibited acidic solution vol.4, pp.73, 2015, https://doi.org/10.1039/c4ra04026k
  2. Inhibition of mild steel corrosion in sulfuric acid solution using collagen vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1809-0
  3. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise vol.490, pp.None, 2017, https://doi.org/10.1016/j.jcis.2016.11.048
  4. Green inhibitors for corrosion protection in acidizing oilfield environment vol.24, pp.None, 2015, https://doi.org/10.1016/j.jaubas.2016.08.001
  5. RHIZOPHORA APICULATA AS ECO-FRIENDLY INHIBITOR AGAINST MILD STEEL CORROSION IN 1 M HCL vol.24, pp.suppl1, 2015, https://doi.org/10.1142/s0218625x18500130
  6. Enhanced corrosion resistance of reinforced concrete: Role of emerging eco-friendly Elaeis guineensis/silver nanoparticles inhibitor vol.188, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.08.140
  7. Characterizations of Plant Extract by AAS and GC-MS as Green Inhibitor for Mild Steel in 1.0 M HCl vol.42, pp.4, 2015, https://doi.org/10.1007/s40995-017-0384-9
  8. A Recent Progress of Steel Bar Corrosion Diagnostic Techniques in RC Structures vol.19, pp.1, 2015, https://doi.org/10.3390/s19010034
  9. New insights into copper corrosion in presence of benzotriazole and chloride ions vol.54, pp.1, 2019, https://doi.org/10.1080/1478422x.2018.1537157
  10. Experimental and Theoretical Approach on the Enhanced Inhibitory Effect of Tetracyclic Triterpenes for Stainless Steel Corrosion in Sulfuric Acid vol.50, pp.6, 2015, https://doi.org/10.1007/s11661-019-05191-3
  11. Evaluation of Paullinia Cupana as a green corrosion inhibitor for carbon steel utilizing gravimetric and electrochemical noise techniques vol.6, pp.7, 2015, https://doi.org/10.1088/2053-1591/ab13c0
  12. Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research vol.33, pp.13, 2015, https://doi.org/10.1080/01694243.2019.1587224
  13. Sugarcane Wastes as a Green Additive to Control Corrosion of Steel-Reinforced Concrete Under Different Treatment Conditions vol.5, pp.4, 2015, https://doi.org/10.1007/s40735-019-0281-1
  14. Adsorption and Corrosion Inhibition Properties of Butanolic Extract of Elaeoselinum thapsioides and Its Synergistic Effect with Reutera lutea (Desf.) Maires (Apiaceae) on A283 carbon Steel in Hydrochl vol.3, pp.1, 2020, https://doi.org/10.1007/s42250-019-00093-8
  15. Evaluation of Eulychnia acida and Echinopsis chiloensis (Cactaceae) extracts in inhibiting corrosion of carbon steel in HCl solution vol.71, pp.4, 2015, https://doi.org/10.1002/maco.201911274
  16. Unveiling Corrosion Behavior of Pipeline Steels in CO2-Containing Oilfield Produced Water: Towards Combating the Corrosion Curse vol.45, pp.3, 2015, https://doi.org/10.1080/10408436.2019.1588706
  17. A Review of Green Scale Inhibitors: Process, Types, Mechanism and Properties vol.10, pp.10, 2015, https://doi.org/10.3390/coatings10100928
  18. Synthesis and application of carboxyethylthiosuccinic acid by thiol-ene click reaction: as a novel rust remover with corrosion inhibition properties vol.132, pp.1, 2015, https://doi.org/10.1007/s12039-020-1756-9
  19. An overview of green corrosion inhibitors for sustainable and environment friendly industrial development vol.35, pp.7, 2015, https://doi.org/10.1080/01694243.2020.1816793
  20. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications vol.2, pp.12, 2021, https://doi.org/10.1039/d0ma00681e
  21. A comprehensive review of anticorrosive graphene-composite coatings vol.157, pp.None, 2015, https://doi.org/10.1016/j.porgcoat.2021.106321
  22. OAT EXTRACT AS A NATURAL CORROSION INHIBITOR FOR MILD STEEL IN 3% NaCl SOLUTION vol.28, pp.10, 2015, https://doi.org/10.1142/s0218625x21500840
  23. Corrosion Inhibition Using Harmal Leaf Extract as an Eco-Friendly Corrosion Inhibitor vol.26, pp.22, 2021, https://doi.org/10.3390/molecules26227024
  24. Electrochemical studies and molecular simulations on the use of molybdic acid for stabilization of AISI 304 stainless steel passive film in sulfuric acid medium vol.344, pp.None, 2015, https://doi.org/10.1016/j.molliq.2021.117733
  25. Gum Arabic Nanoparticles as Green Corrosion Inhibitor for Reinforced Concrete Exposed to Carbon Dioxide Environment vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247867
  26. Evaluation of TG202 inhibitor for tubing steels in 15% hydrochloric acid by electrochemical noise technology vol.8, pp.12, 2021, https://doi.org/10.1088/2053-1591/ac433f
  27. Carbon Dots as Environment-Friendly and Efficient Corrosion Inhibitors for Q235 Steel in 1 M HCl vol.37, pp.49, 2015, https://doi.org/10.1021/acs.langmuir.1c02182
  28. Stachys byzantina extract: A green biocompatible molecules source for graphene skeletons generation on the carbon steel for superior corrosion mitigation vol.143, pp.None, 2015, https://doi.org/10.1016/j.bioelechem.2021.107970